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CHAPTER 1 INTRODUCTION TO PROBABILITY 

 

 

1.1 Probability Spaces 

 

Definition 1.1 An experiment is a specific set of actions the results of which cannot be predicted with 

certainty. 

 

Definition 1.2 Each possible result of the experiment defines a sample point or outcome, . ω

 

Definition 1.3 The set of all outcomes of an experiment is called the sample space and is denoted by Ω . 

 

Definition 1.4 An event is a subset of the sample space, i.e., it is a group of outcomes. We let  be the 

set of all “reasonable” events (the set of all subsets of Ω  if Ω  is countable.) 

F

 

Definition 1.5 We assign a probability to each event in F . We refer to ( ,  as a probability 

space. Such a  must satisfies: 

Pr ,Pr)Ω F

Pr

(1) 0 P ; r( ) 1,A A≤ ≤ ∀ ∈ F
(2) Pr ; ( ) 1Ω =
(3) Countable Additivity: If , is a finite or countably infinite sequence of mutually exclusive 

events in F  then .  
1 2 3, , ,...A A A

Pr( ) Pr( )i ii i
A A=∑∪

 

Lemma 1.1 Some consequences of the above three axioms in definition 1.5 are that 

(1) Pr ; ( ) 0∅ =
(2) If A  then Pr ; B⊆ ( ) Pr( )A B≤
(3) Pr ; ( ) 1 Pr( )cA A= −

(4) (Boole’s Inequality) . 
1 1

Pr( ) Pr( )i ii i
A A

∞∞

= =
≤∑∪

 

1.2 Random Variables 

 

Definition 1.6 A random variable (r.v.) is a function from Ω  (the sample space) to the real line, i.e., a 

random variable assigns a number to every outcome of the sample space. Random variables are usually 

denoted by capital letters, e.g., . We sometimes write  to make the dependence on the 

outcome  explicit. When we write Pr  we are in effect writing Pr . 

, ,and X Y Z ( )X ω
ω ( )X A∈ { : ( ) }X Aω ω ∈

 

Definition 1.7 The cumulative distribution function (c.d.f.) or distribution function of  is the function 

 defined by . All proper distribution functions  satisfy: 

X

( )F x ( ) Pr( )F x X x= ≤ ( )F x

(1) F  is non-decreasing; 

(2) lim ; ( ) 0x F x→−∞ =
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(3) lim ; ( ) 1x F x→+∞ =

(4) F  is continuous from the right. 

 

Definition 1.8 A discrete random variable is a r.v. whose range (set of possible values) is finite or 

countable. If X  is discrete, then . ( ) Pr( ) Pr( )
y x

F x X x X y
≤

= ≤ = =∑
 

Definition 1.9 An (absolutely) continuous variable, X , is a random variable whose distribution function 

 is given by  for some function . The function  is called the probability density 

function (p.d.f.). 

F ( ) f( )
x

F x y dy
−∞

= ∫ f f

 

Definition 1.10 Stieltjes Integral: We define the integral 

 
( )Pr( )  discrete

( ) ( )
( )f( )  continuous

x A

A

A

g x X x X
g x dF x

g x x dx X

∈
⎧⎪ =⎪⎪⎪= ⎨⎪⎪⎪⎪⎩

∑
∫ ∫

 

 

Definition 1.11 The expected value or mean of  is defined to be X

Pr( )  discrete
E ( )

f( )  continuous

x
x X x X

X xdF x
x x dx X

+∞

+∞
−∞

−∞

⎧⎪ =⎪⎪⎪= = ⎨⎪⎪⎪⎪⎩

∑
∫ ∫

 

We also define  

 E[ ( )] ( ) ( ).g x g x dF x
+∞

−∞
= ∫  

 

Definition 1.12 The variance of X  is defined to be . 2 2Var( ) E[( E ) ] E( ) [E( )]X X X X X= − = − 2

 

Example 1.1 Let the random variable X  be uniformly distributed between [1 . We have the p.d.f. as , 3]

 
1
2 1 3

f( )
0 else.

x
x

⎧ ≤ ≤⎪⎪⎪= ⎨⎪⎪⎪⎩
 

The cumulative density function is: 

 1
2

0 1

( ) ( 1) 1 3

1 3

x

F x x x

x

⎧⎪ <⎪⎪⎪⎪= − ≤ ≤⎨⎪⎪⎪ >⎪⎪⎩ .

 

We then have the following results: 
3

1
2

1
E( ) f( ) 2,x x x dx x dx

+∞

−∞
= = ⋅ =∫ ∫  

3
2 2 2 1 1

2 3
1

E( ) f( ) ,x x x dx x dx
+∞

−∞
= = ⋅ =∫ ∫ 3  

2 2 13 1
3 3Var( ) E( ) E( ) 4 .x x x= − = − =  

 

Comment 1.1 If X  is a continuous r.v. with c.d.f. F , then  is uniformly distributed over (0 .  ( )F X ,1)
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⋅

yX F x y→∞=

Proof: Let . Apparently,  satisfies the domain requirement for uniform distribution.  ( )F X U= [0,1]U ∈

  
1

1

Pr( ) Pr[ ( ) ] Pr[ ( )] < () is non-decreasing>

[ ( )]

U u F X u X F u F

F F u u

−

−

≤ = ≤ = ≤ ⋅

= =

Therefore, U  is uniformly distributed over (0 . QED ,1)

 

Comment 1.2 If U  is a uniform r.v. over (0 , then  has distribution F , where  is the 

value of y  such that . 

,1) 1( )F U− 1( )F x−

( )F y x=

Proof: Following the property of uniform distribution, we have . Let . Pr( )U u u≤ = 1( )F U Y− =

  
1 -1Pr( ) Pr[ ( ) ] Pr[ ( )] < () is non-decreasing, so is ( )

( ) <Pr( ) >

Y y F U y U F y F F

F y U u u

−≤ = ≤ = ≤ ⋅ >

= ≤ =
Therefore,  has distribution . QED 1( )F U− F

 

Comment 1.3 The property mentioned in comment 1.2 is often used to generate continuous r.v.s. in 

simulation. As long as we can define , we can easily generate uniform  and thus  for 

distribution F . 

1( )F− ⋅ (0,1)U 1( )F U−

 

Definition 1.13 The joint distribution function (c.d.f.) F  of two random variables  and Y  is defined to 

be . Given the joint c.d.f. of  and Y , F x  is the c.d.f. of 

 and  is the c.d.f. of Y . 

X

( , ) Pr( , )F x y X x Y y= ≤ ≤ X ( ) lim ( , )

X ( ) lim ( , )xYF y F x y→∞=

 

Example 1.2 Let’s toss a fair coin twice. Let  be the number of heads shown up and  if the 

results of the two tosses are the same and  otherwise.  

X 1Y =

0Y =

We find that . If  are discrete r.v. then 

. If  are jointly continuous r.v.s., then we have 

. 

( , ) Pr( , ) Pr{ : ( ) , ( ) }F x y X x Y y X x Y yω ω ω= ≤ ≤ = ≤ ≤ ,X Y

' '
( , ) Pr( ', ')

x x y y
F x y x y

≤ ≤
=∑ ∑ ,X Y

( , ) f( ', ') ' '
x y

F x y x y dx dy
−∞ −∞

= ∫ ∫
 

Definition 1.14 Two random variables  and Y  are independent if  X ( , ) ( ) ( )X YF x y F x F y=

 for all x  and y , where F  is the joint c.d.f. of  and Y ;  and  are the marginal c.d.f.’s of 

 and Y  respectively. 

X ( )XF x ( )YF y

X

 

Lemma 1.2 If  and Y  are independent then  for all functions g  and h  

for which these expectations are well defined. (But the converse may not be true.) 

X E[ ( ) ( )] E[ ( )]E[ ( )]g X h Y g X h Y=

 

Definition 1.15 The covariance of X  and Y  is defined as  
  Cov( , ) E[( E )( E )] E[ ] E( )E( ).X Y X X Y Y XY X Y= − − = −
 

Example 1.3 Does zero covariance imply independence? Not necessarily. Consider the following example. 

All points on a unit circle are equally likely distributed and we have  
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Cov( , ) E( ) E( )E( ) 0 0 0 0X Y XY X Y= − = − ⋅ = . 

However, we also have  but Pr , which implies that  and Y  are not 

independent. 

Pr( 0 | 1) 0X Y= = = ( 0) 0X = ≠ X

 

1.3 Moment Generating, Characteristic Functions, and Laplace Transforms 

 

Definition 1.16 The moment generating function (m.g.f.) of a r.v. X , written as , is given by ( )X tψ

 ( ) E( ) ( ),tX tx
X t e e dF xψ

+∞

−∞
= = ∫  

for all real t . When a moment generating function exists in a neighborhood of 0, it uniquely determines 

the distribution of X . 

 

Example 1.4 Let . We have  Exp( )X λ∼

0
f( )

0 otherwi

xe x
x

λλ −⎧⎪ ≥⎪⎪= ⎨⎪⎪⎪⎩ se.
 

The moment generating function is then 
( ) ( )

00 0
( ) E( ) | (for )tX tx x t x t x

t tX
t e e e dx e dx e tλ λ λλ λ

λ λψ λ λ
∞ ∞− − − ∞

− −= = = = = <∫ ∫ λ . 

'( ) E( ) E( ) (if interchangability is allowed)

E( ).

tX tXd d
dt dtX

tX

t e e

Xe

ψ = =

=
 

So . Similarly,  and thus  Hence 

. In this particular example, 

0'(0) E( ) E( )X
X

Xe Xψ ⋅= = 2"( ) E( )tX
X

t X eψ = 2"(0) E( ).
X

Xψ =
2 2Var( ) E( ) [E( )] "(0) [ '(0)]X XX X X ψ ψ= − = − 2

2( )
'( )X t
t λ

λ
ψ

−
= , 

3
2

( )
"( )X t
t λ

λ
ψ

−
= , 1E( )X λ=  and 2

1Var( )X
λ

= .  

 

Comment 1.4 The m.g.f. may not be found. For example, the m.g.f. of a Cauchy r.v. can not be found. 

Can you find the m.g.f. for a distribution that has p.d.f. of 2
1

(1 )
f( )

x
x

π +
= ∀x ? Sometimes, it is more 

convenient to define characteristic function, which always exists, rather than moment generating function. 

Note also that there are many cases where we can write down the m.g.f. but there is no explicit 

distribution, such as the usual cases in queuing applications. 

 

Example 1.5 Let , then we have the following m.g.f.: Poisson( )X λ∼

 
( )

! ! !0 0 0

( 1)

( ) E[exp( )] < >

.

t x ttx x x

t

e ee e
x x xX x x x

e

t tX e e e

e

λ λλ λ λλ α

λ

ψ −∞ ∞ ∞− −
= = =

−

= = = = =

=

∑ ∑ ∑ eα

 

 

Definition 1.17 The characteristic function of a r.v. , written , is given by X ( )X uφ

 ( ) E( ) ( ),iuX iux
X

u e e dF xφ
+∞

−∞
= = ∫  

 for all real u  (where 1i = − ). Note that φ  uniquely defines  and vice versa. F
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Definition 1.18 For non-negative r.v.s. the Laplace transform of the r.v.  with c.d.f. F , written , is 

given by  

X ( )F s�

 
0

( ) E( ) ( ),sX sxF s e e dF x
+∞

− −= = ∫�  

for all real . 0s ≥
 

Example 1.6 Suppose  are independent r.v. with known distribution function. What is the 

distribution of ? 

,X Y

X Y+
Let  be the characteristic functions and  are known. , ,

X Y X Y
φ φ φ+ ,X Yφ φ

  
( ) E{exp[ ( )]} E[exp( )exp( )]

E[exp( )] E[exp( )] <By independence of  and >

( ) ( ).

X Y

X Y

u iu X Y iuX iuY

iuX iuY X Y

u u

φ

φ φ

+ = + =

= ⋅

= ⋅

 

Comment 1.5 Some common distributions and their moments as well as moment generating functions. 

(1) Bernoulli Distribution 

One experiment with two possible outcomes x , success or failure.  and . The 

p.d.f. for x  is .  and . The m.g.f. is . 

(success) 1x = (failure) 0x =
1f( ) (1 )x xx p p −= − pµ = 2 (1 )p pσ = − pe

t p pe= − +

( ) 1 t
X t pψ = − +

(2) Binomial Distribution 

x  numbers of success within n  Bernoulli experiments. The p.d.f. is .  and 

. The m.g.f. is . 

( )f( ) (1 )n x n x
xx p p −= − npµ =

2 (1 )np pσ = − ( ) (1 )t n
X

ψ

(3) Negative Binomial Distribution 

x  numbers of failures before the  success within x  Bernoulli experiments. The p.d.f. is 

. 

thk k+

( )11
f( , ) (1 )x k k x

k
x k p p+ −

−= −

(4) Geometric Distribution (Two versions with different starting values) 

x  numbers of failures before the first success within  Bernoulli experiments. The p.d.f. is 

. 

1x +
f( ) (1 ) , 0xx p p x= − ≥ 1 p

pµ −=  and 2
12 p
p

σ −= . The m.g.f. is . 1( ) [1 (1 )]t
X t p e pψ −= − −

1x −  numbers of failures before the first success within x  Bernoulli experiments. The p.d.f. is 

. 1f( ) (1 ) , 1xx p p x−= − ≥ 1
pµ =  and 2

12 p
p

σ −= . The m.g.f is . ( ) /[1 (1 ) ]t t
X

t pe p eψ = − −

Note that we have different means  for two versions because the expectations were calculated 

based upon different lower bounds of the domain for x .  

E( )xµ =

(5) Hyper-geometric Distribution 

There are N  balls with R  red ones. Get x  red balls within n  draws without replacement. The p.d.f. is 

. ( )(R N
x n

−
− ) ( )f( ) /R N

x nx =

(6) Pareto Distribution 

The p.d.f. is  for . ( 1)
0f( , )x x xθ θθ θ += ⋅ ⋅ 0x x≥ 0

1
x θ
θµ −= . 

(7) Trinomial Distribution 

One experiment with there possible outcomes. Repeat the experiment n  times. The p.d.f. is 
!

! !( )! 1 2 3f( , ) x y n x yn
x y n x yx y p p p − −

− −= ⋅ ⋅  with . The m.g.f. is . 1 2 3 1p p p+ + = 1 2
1 2 1 2 3,X Y

ψ ( , ) ( )t t nt t p e p e p= + +

(8) Multinomial Distribution 
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One experiment with  possible outcomes. Repeat the experiment n  times. The p.d.f. is k
1

1 2

!
! ! ... !1 11f( ,..., ) ... k

k

xn
x x xk

xx x p p− = ⋅ ⋅ 1
kk

p = =∑
n

k

k  with ∑  and . The m.g.f. is 

.  
kk

x n

1 1

1 1,..., 1 11 1
( ,... ) ( ... )k

k

t t
x x k k

t t p e p e pψ −

− − −= + + +

(9) Poisson Distribution 

The p.d.f. is !f( , ) xe
xx λλλ −=  for  We can get the Poisson distribution from Bi  if we let 

 and np . . The m.g.f. is . 

0,1,2,....x = n( , )n p

n → ∞ λ= 2µ σ λ= = ( 1)( )
te

X t eλψ −=

(10) Gamma Distribution 

The p.d.f. is 1 /

( )f( , , ) xx ex α
αα βα β − −

Γ= β  for . When , we have 0, , 0x α β≥ > 1β = 1

( )f( ) xx ex α

α
− −

Γ= , hence 

. µ  and . The m.g.f. is  for 1

0
( ) xx e dxαα

∞
− −Γ = ∫ αβ= 2σ αβ= 2 ( ) (1 )X t t αψ β −= − 1t β< . 

(11) Chi-square Distribution 

The p.d.f. is 2 11
( /2) 2

f( )
r

r
x x − −

Γ= 2
x

e . This is the special case of Gamma distribution where 2
rα =  and 

. The m.g.f. is 2β = 2( ) (1 2 )
r

X t tψ −= −  for 1
2t < . 

(12) Exponential Distribution 

The p.d.f. is  for . This is the special case of Gamma distribution where  and f( ) xx e λλ −= 0x > 1α =
1
λβ = . 1

λµ =  and 2
2 1

λ
σ = . The m.g.f. is ( ) tX t λ

λψ −=  for t . The c.d.f. is  for . λ< ( ) 1 xF x e λ−= − 0x >

(13) Normal Distribution 

The p.d.f. is ( ){ 21 1
22

f( ) exp xx µ
σπσ
−= − }  and the m.g.f. is 2 2

2( ) exp( )t
X t t σψ µ= + . 

(14) Uniform Distribution 

The p.d.f. is 1f( ) b ax −=  for a x . b< < 2
a bµ +=  and 

2( )2
12

b aσ −= . The m.g.f. is ( )( ) tb tae e
t b aX

tψ −
−= . 

(15) Beta Distribution 

The p.d.f. is ( ) 1 1
( ) ( )f( , , ) (1 )bx xα β α
α βα β Γ + − −

Γ Γ= − x  for 0 1 . x< < α
α βµ +=  and 2

2
( ) ( 1)

αβ
α β α β

σ
+ + +

= . 

 

1.4. Some Useful Tools 

 

Theorem 1.1 Fubini’s Theorem 

(1) If  almost surely, then .  0nX ≥
1 1

E En nn n
X X

∞ ∞

= =
=∑ ∑

(2) If 
1

E nn
X

∞

=
<∞∑ , then . 

1 1
E En nn n

X X
∞ ∞

= =
=∑ ∑

(3) If , then E ( . ( ) 0X t ≥ ) E (X t dt X t dt
+∞ +∞

−∞ −∞
=∫ ∫ )

(4) If E ( )X t dt
+∞

−∞
<∞∫ , then .  E ( ) E (X t dt X t dt

+∞ +∞

−∞ −∞
=∫ ∫ )

 

Note that an expectation is just a sum or integral so the above results hold if the expectations are 

replaced by sums or integrals. Indeed, Fubini’s theorem must be used whenever interchanging infinite 

sums or integrals. 
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x dx

1 y

dy dy

k
N N i N k

∞

=
= = >∑

E

Comment 1.6 When we calculate the sum or integral, we can insert an identity in the form of sum or 

integral, and then use Fubini’s Theorem to simplify the calculation. For example, we can use this trick to 

show that if  is nonnegative with distribution F , then  X

  1

0 0
E( ) [1 ( )]  and E( ) [1 ( )] .n nX F x dx X nx F

∞ ∞
−= − = −∫ ∫

Here is how: 

  
0 0 0 0

0

0

E( ) ( ) ( ) < >

( ) <0 ; Fubini's Theorem>

[1 ( )] .

x x

y

X xdF x dydF x x dy

dF x dy y x

F y dy

∞ ∞

∞ ∞

∞

= = =

= ≤ ≤ <∞

= −

∫ ∫ ∫ ∫
∫ ∫
∫

Similarly, we have 

  1 -

0 0 0 0
E( ) ( ) ( ) < >

x x
n n n n nX x dF x ny dydF x x ny d

∞ ∞ −= = =∫ ∫ ∫ ∫

  
1

0

1

0

( ) <0 ; Fubini's Theorem>

[1 ( )] .

n

y

n

ndF x y dy y x

n F y y dy

∞ ∞ −

∞ −

= ≤ ≤ <∞

= −

∫ ∫
∫

 

Comment 1.7 When using Fubini’s Theorem to switch sums or integrals, take extra caution when 

determining the domain of two indexing variables. In the example above, we use two identities, 

 and . Note the fact that  when determining the new ranges 

for the integrals after switching.  
0

x
x y= ∫ 1

0

x
n nx ny −= ∫ 0 y x≤ ≤ <∞

 

Definition 1.19 Define the indicator variable of the event  to be  if event A  occurs and 

 otherwise. Then . A useful tool is to multiply an expression by  

(which is identically equal to one) and then calculate the terms individually. 

A ( ) 1I A =

( ) 0I A = E[ ( )] Pr( )I A A= ( ) ( )cI A I A+

 

Comment 1.8 Let N  be a positive integer valued r.v. For an infinite series , where 

, note that  would select the  element of the original series and  

would select the first  elements of the original series. We now want to prove the very useful result 

, a natural counterpart to the result in Comment 1.6 for 

positive integer r.v. N . 

1 2{ , ,... ,...}nX X X

1,2,...,n = ∞ ( ) nI N n X= thN ( ) nI N n X≥
N

1 0
E( ) Pr( ) Pr( )

i

∞

=
≥∑

 

1

1 1

1

1

E( ) Pr( ) <By definition of expectation>

Pr( ) <By creating identity>

Pr( ) <By Fubini's theorem;1 >

Pr( ) <By countable additivity>

n
n

n i

i n i

i

N n N n

N n

N n i n

N i

∞

=
∞

= =
∞ ∞

= =
∞

=

= =

= =

= = ≤ ≤ <∞

= ≥

∑
∑ ∑
∑ ∑
∑

 

 

Lemma 1.3 Suppose {  are i.i.d. non-negative r.v.s., independent of N , a positive integer valued r.v., 

then .  

}iX

[ ]
1

E E
N

i ii
X N X

=
⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎣ ⎦⎣ ⎦∑
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1 2

1 1 1
, ,... ,...

n

i i ii i i
X X X

= = =∑ ∑ ∑ 1,2,...,= ∞
1
X

 

Proof (Version 1): Use the selector  to get the  element from the series 

, where n . Hence 

1
( )

n
ni

I N n X
=

= ∑ thN

{ } 1 1
( )

N n

i ii n i
X I N n

∞

= = =
⎡ ⎤= =⎢ ⎥⎣ ⎦∑ ∑ ∑ .  

Now we have  

[ ]

1 1 1

1 1

1 1

1

E E ( )

E ( ) <By Fubini's theorem; non-negativity of >

E ( ) E <By independence of  and >

E( ) Pr[ ]

E( )E( ). QED

N n

i ii n i

n

i in i

n

i in i

i n

i

X I N n X

I N n X X

I N n X X N

X n N n

N X

∞

= = =
∞

= =
∞

= =
∞

=

⎡ ⎤= =⎢ ⎥⎣ ⎦
⎡ ⎤= =⎢ ⎥⎣ ⎦

⎡ ⎤= = ⎢ ⎥⎣ ⎦
= =

=

∑ ∑ ∑
∑ ∑
∑ ∑

∑
 

 

Proof (Version 2): Use the selector  to get the first N  elements from the series 

, where . Hence we have the following proof: 

( ) nI N n X≥

1 2{ , ,..., ,...}nX X X 1,2,...,n = ∞

( )1 1

1

1

1

E E ( ) <By definition of selector>

E[ ( ) ] <By Fubini's Theorem; non-negativity of >

E[ ( )]E( ) <By independence of  and >

E( ) Pr( ) <By definition of indic

N
nii n

n nn

n nn

i n

X I N n X

I N n X X

I N n X N X

X N n

∞

= =
∞

=
∞

=
∞

=

= ≥

= ≥

= ≥

= ≥

∑ ∑
∑
∑

∑ ator variable>

E( )E( ). QED <By  proved above>iN X= Comment 1.8

 

 

Comment 1.9 Here are three useful identities regarding exponential function.  

(1) lim(1 )n
n

n
eα α

→∞
= +  

(2) !0

n

nn
eα α∞

=
=∑  

(3) 
2at

ae dt π
+∞ −

−∞
=∫  

Proof for (1):  

 
{ }

( ) { }
1

1
21

1
2

ln(1 )

1

lim(1 ) lim{exp[ ln(1 )]} lim exp

exp lim exp lim . QED

n

n

nn

n
n

n
n n

n n n

n n

n

e

α

α
α

α

α α

αα+

+

→∞ →∞ →∞

⋅ −

+−→∞ →∞

⎡ ⎤+ = + = ⎢ ⎥⎣ ⎦
⎧ ⎫⎪ ⎪⎪ ⎪ ⎡ ⎤= = =⎨ ⎬ ⎢ ⎥⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭

 

Proof for (2): Using Taylor series expansion to expand e  around . QED α 0α =

Proof for (3): ( )2

11
22

2
1 1

22 ( )
exp . QED

aa

at t
a ae dt dtπ π

π

+∞ +∞−

−∞ −∞

⎧ ⎫⎪ ⎪⎪ ⎪= − =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭∫ ∫  

 

Comment 1.10 Here are two useful formula for calculating the derivative of integration: 

(1) f( ) f( )
x

a

d t dt x
dx

=∫  and f( ) f( )
b

x

d t dt x
dx

= −∫  

(2) f( , ) f' ( , )
b b

x
a a

d x t dt x t dt
dx

=∫ ∫  and f( , ) f' ( , )x
c c

d x t dt x t dt
dx

∞ ∞
=∫ ∫  

(3) 
( ) ( )

( ) ( )
f( , ) f[ , ( )] '( ) f[ , ( )] '( ) f' ( , )

v x v x

x
u x u x

d x t dt x v x v x x u x u x x t dt
dx

= − +∫ ∫   
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The property (3) is also called Leibniz’s Rule, and the properties (1) and (2) are special cases of Leibniz’s 

Rule.  

 

1.5 Conditional Probability and Expectation 

 

Definition 1.20 Let X  and Y  be discrete r.v.s., then we have Pr( , )
Pr( )Pr( | ) X x Y y

Y yX x Y y = =
== = = , for all y  

such that . Pr( ) 0Y y= >

Y

 

Definition 1.21 E( . If X  and Y  are independent then 

. 

| ) Pr( | )
x

X Y y x X x Y y= = = =∑
E( | ) E( )X Y y X= =

 

Definition 1.22 Define the expectation of  given Y , , to be the r.v. that takes on the value 

 whenever Y .  

X E( | )X Y

E( | )X Y y= y=

 

Theorem 1.2  if E( ) E[E( | )]X X= E( )X  is finite or  almost surely. 0X ≥

Proof in the discrete case: 

E[E( )] E( | )Pr( ) Pr( | )Pr( )

Pr( , ) Pr( , )

Pr( ) E( ). QED

y y x

y x x y

x

X Y X Y y Y y x X x Y y Y y

x X x Y y x X x Y y

x X x X

= = = = = =

= = = = = =

= = =

∑ ∑ ∑
∑ ∑ ∑ ∑
∑

=

np=

=

| N ⎤
⎥⎦

i

 

 

Example 1.7 Suppose a manufacture produces a lot of n  items. Each item is defective with probability 

, where P  is a r.v. with c.d.f. F  and mean . What is the expected number of defective items in the 

lot? 

P 0p

Let  be the number of defective items in the lot. Apparently the conditional expectation is 

, which is a result similar to Binomial distribution, but here we don’t need the 

independence for each examination. Then the unconditional mean becomes 

N

E( | )N P p np= =

0.
E( ) E( | ) ( ) ( )N N P dF P nPdF P

+∞ +∞

−∞ −∞
= =∫ ∫  

Alternatively, we have E(  since E( . Thus  | )N P nP= | )N P p np= =

0E( ) E[E( | )] E( ) E( )N N P nP n P np= = = . 

 

Armed with the Theorem 1.2, we now try to prove Lemma 1.3 in a third way.  

By the Theorem 1.2, we have . Since { }1 1
E E E

N N

i ii i
X X

= =
⎡ ⎤ ⎡=⎢ ⎥ ⎢⎣ ⎦ ⎣∑ ∑

1 1
E | E <By independence of  and >

E( ),

N n

i ii i

i

X N n X X N

n X
= =

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
=

∑ ∑  

we have { }1 1
E E E | E E( ) E( )

N N

i i ii i
X X N N X X

= =
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥ E( )i N⎣ ⎦⎣ ⎦ ⎣ ⎦∑ ∑ . QED 
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.

i

p

X

Example 1.8 Suppose that  is a sequence of independent Bernoulli random variables (trials) with 

. Let N  be the number of trials until the first failure ( ). What is 

 and ? 

1 2, ,..X X

Pr( 1) 1 Pr( 0)iX p X= = = − = 0iX =

E( )N 2E( )N

By definition, we have , but this is not a good way to 

proceed. Using the Theorem 1.2 again, we have 

1
1 1

E( ) Pr( ) (1 ) n
n n

N n N n n p
∞ ∞ −
= =

= = = −∑ ∑
1E( ) E E( | )N N⎡ ⎤= ⎣ ⎦ , where  is the result of the first 

trial. If , then the experiment ends with ; otherwise, we get a recursive game with 

, where  is identically distributed as N . Therefore, we have the following results 

1X

1 0X = 1{ | 0} 1N X = =

1{ | 1} 1 'N X N= = + 'N

  
2

1 1

2 2
1 1

E( | 0) 1 and E( | 0) 1;

E( | 1) 1 E( ) and E( | 1) E[(1 ) ] 1 2E( ) E( ).

N X N X

N X N N X N N N

= = = =

= = + = = + = + + 2

Therefore, we have  
 1

1E( ) 1 (1 ) [1 E( )] E( ) ,pN p N p N −= ⋅ − + + ⋅ ⇒ =  
and 

 2
12 2

(1 )
E( ) 1 (1 ) {1 2E( ) E( )} E( ) .p

p
N p N N p N +

−
= ⋅ − + + + ⋅ ⇒ =2

}X

 
 

Example 1.9 “Thief of Baghdad” Suppose the thief is in a dungeon that has three doors. One door leads 

to freedom immediately, and the second door leads back to the dungeon after one day, and the third door 

leads back to the dungeon after three days. It is assumed that the thief would forget which door he 

previously took once he gets back to the dungeon, and further that the probability of getting to each of 

the three doors is equal. What is the expected number of days before the thief can get out of the 

dungeon? 

Let  be the number of days until freedom and  be the consequence of the door chosen at the very 

beginning. The theorem 1.2 tells us that 

N 1X

{ 1E( ) E E |N N⎡ ⎤= ⎣ ⎦ . We know that , 

, and . Hence we have  
1E( | 0) 0N X = =

1E( | 1) 1 E( )N X N= = + 1E( | 3) 3 E( )N X N= = +
 1 1 1

3 3 31 1 1E( ) E( | 0) E( | 1) E( | 3) [4 2E( )]/ 3.N N X N X N X N= = ⋅ + = ⋅ + = ⋅ = +  
Finally, we have . E( ) 4N =

 

Comment 1.10 It is a good habit to define clearly the events before tackling a problem in probability. It is 

very important to define an event  such that the game conditional upon the occurrence of X  will 

evolve into a recursive game.  

X

 

Theorem 1.3 Law of Total Probability Let  be some event and Y  some r.v. with c.d.f. , then 

. 

A F

Pr( ) Pr( | ) ( )
y

A A Y y d= =∫ F y

Proof: First of all, [ ] [ ]{ }Pr( ) E ( ) E E ( ) |A I A I A Y= = . Then [ ]E ( ) | Pr( | )I A Y y A Y y= = = , thus we have 

[ ]{ }E E ( ) | Pr( | ) ( )
y

I A Y A Y y dF y= =∫ . QED 

 

Example 1.10 “Monte Hall’s Problem” There is one prize behind one of three doors. You are asked to 

choose one door, and suppose you pick door 1. Before door 1 is opened, Monte Hall would open one of two 
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doors left, say, door 3, showing you that there is nothing behind. Should you switch your choice to door 2 

or stick with door 1? 

For , let  be the event that you choose the  door; here we have . Let 

 be the event that the prize is behind the  door. Let  be the event that Monte Hall 

opens the  door; here we have . 

1,2, 3i = ( ) 1C i = thi (1) 1C =

( ) 1D i = thi ( ) 1X i =
thi (3) 1X =

Before Monte Hall opens the third door, we have 1
3Pr[ ( ) 1, ( ) 1] , ,C i D j i j= = = ∀ . After Monte Hall opened 

the third door, however, we need update our believes according to Bayes’ rule.  

Given the choice of door 1, the probability that Monte Hall opens the third door is: 

1 1 1 1
2 3 3 2

Pr[ (3) 1 | (1) 1] Pr[ (3) 1 | (1) 1, (1) 1] Pr[ (1) 1, (1) 1]

         Pr[ (3) 1 | (1) 1, (2) 1] Pr[ (1) 1, (2) 1] 1 .

X C X C D C D

X C D C D

= = = = = = ⋅ = =

+ = = = ⋅ = = = ⋅ + ⋅ =
 

 

Note that here we use the discrete version of Law of Total Probability. 

Given the choice of door 1 and the fact that nothing is behind door 3, the probability that the prize is 

behind door 1 is given by 

 
1 1
2 3 1

31
2

Pr{ (1) 1,[ (3) 1 | (1) 1]}
Pr{ (1) 1 | [ (3) 1 | (1) 1]}

Pr[ (3) 1 | (1) 1]
Pr[ (3) 1 | (1) 1, (1) 1] Pr[ (1) 1, (1) 1]

.
Pr[ (3) 1 | (1) 1]

D X C
D X C

X C
X C D C D

X C

= = == = = =
= =

= = = ⋅ = = ⋅= =
= =

=
 

Similarly, we have 

 2
3

Pr[ (3) 1 | (1) 1, (2) 1] Pr[ (1) 1, (2) 1]
Pr{ (2) 1 | [ (3) 1 | (1) 1]} .

Pr[ (3) 1 | (1) 1]
X C D C D

D X C
X C

= = = ⋅ = == = = = =
= =

 

Therefore, you should always switch the door upon such a choice is given. 

 

Example 1.11 Suppose that X  and Y  are independent, and . Find . ,X F Y G∼ ∼ Pr( )X Y≤

Pr( ) Pr( | ) ( )

Pr( | ) ( ) <By Theorem 1.2>

Pr( ) ( ) <By independence>

( ) ( ).

X Y X Y Y y dG y

X y Y y dG y

X y dG y

F y dG y

+∞

−∞
+∞

−∞
+∞

−∞
+∞

−∞

≤ = ≤ =

= ≤ =

= ≤

=

∫
∫
∫
∫

 

 

Example 1.12 Suppose that X  and Y  are independent, and . Find the distribution of 

. 

,X F Y G∼ ∼

X Y+

Pr( ) Pr( | ) ( ) Pr( ) ( ) ( ) ( )X Y z X Y z Y y dG y X z y dG y F z y dG y
+∞ +∞ +∞

−∞ −∞ −∞
+ ≤ = + ≤ = = ≤ − = −∫ ∫ ∫ .  

This result is actually so useful that we give it a special name, called convolution. 

 

Definition 1.23 If F  and G  are two distribution functions, then the convolution of F  and G , written 

, is given by . Note that if  has c.d.f.  and Y  has c.d.f. G  and 

 and Y  are independent then X  has c.d.f. F . 

F G⊗ ( ) ( ) ( )F G z F z y dG y
+∞

−∞
⊗ = −∫ X F

X Y+ G⊗
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t

Example 1.13 If  are independent exponential r.v.s. with mean , what is the distribution of 

? 
1 2,X X λ

X Y+

We have proved previously for two independent r.v.s. , hence we have ( ) ( ) ( )X Y X Yt tψ ψ ψ+ = ⋅
2

2( )
( ) t tX Y t
t λ λ λ

λ λ λ
ψ − −+ −

= ⋅ = . It turns out that  is distributed as a  r.v. The result for the 

generalized case is given in the following lemma. 

X Y+ Gamma(2, )λ

 

Lemma 1.4 If  is a sequence of independent  r.v.s., then  is distributed as an 

 r.v. 
1 2 3, , ,...X X X Exp( )λ

1

n

ii
X

=∑
Gamma( , )n λ
 

Lemma 1.5 If  and Y  are r.v.s. with X [ ]E XY <∞  then [ ] [ ]E E | E E |X Y X XY X⎡ ⎤ ⎡= ⎤⎣ ⎦ ⎣ ⎦ . 

Proof:  

[ ]E E( | ) E( | )Pr( ) E( | )Pr( )

E( | )Pr( ) E( ). QED
x x

x

X Y X x Y X x X x xY X x X x

XY X x X x XY

= = = = =

= = = =

∑ ∑
∑

=
 

This lemma says that when finding E( ,  can be factored out of the expectation operator as if it 

were a constant. 

| )XY X X

 

1.6 Probability Inequalities 

 

Lemma 1.6 Markov’s Inequality If X  is a nonnegative random variable, then for any , 

. 

0x >

Pr( ) E( )/X x X x≥ ≤

Proof of version 1:  
( ) ( ) <By definition of indicator variable>

( ) <By non-negativity of >

( ) <By the fact that  by now>

X X I X x X I X x

X I X x X

x I X x X x

= ⋅ < + ⋅ ≥

≥ ⋅ ≥

≥ ⋅ ≥ ≥

 

Hence . QED E( ) Pr( ) Pr( ) E( )/X x X x X x X x≥ ⋅ ≥ ⇒ ≥ ≤

 

Proof of version 2: 

  
E( ) Pr( ) Pr( ) Pr( ) <Pr( ) 0, 0>

Pr( ). < > QED

X X X x X X x X X x X x X

x X x X x

= ⋅ ≥ + ⋅ < ≥ ⋅ ≥ ≥ ≥ ≥

≥ ≥ ≥

 

Lemma 1.7 Chebychev’s Inequality If  is a random variable and both c  and  are constants, where 

, then we have 

X ε

0ε > 2 2Pr( ) E( ) /X c X cε ε− > ≤ − . 

Proof: 2 2Pr( ) Pr( ) E( ) /X c X c X cε ε− > = − > ≤ − 2 2ε , by Markov’s Inequality. QED 

 

Lemma 1.8 Chernoff Bounds If  is a random variable with moment generating function , 

then for , Pr , or . 

X ( ) E( )tX
X t eψ =

0x > ( ) ( ), 0tx
X

X x e t tψ−≥ ≤ ∀ > Pr( ) ( ), 0tx
X

X x e t tψ−≤ ≤ ∀ <

Proof:  
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Pr( ) Pr( ) <increasing exponential function>

E( )/ <by Markov's Inequality>

( ). QED

tX tx

tX tx

tx
X

X x e e

e e

e tψ−

≥ = ≥

≤

=

 

 

Comment 1.11 The Markov’s Inequality is very useful when we would like to find out the tail probabilities 

yet the only thing we know about the distribution is the first moment. Note that Chernoff Bounds is less 

useful in practice in the sense that Markov’s Inequality requires only first moment yet the former requires 

more information. 

 

Lemma 1.9 Jensen’s Inequality If f  is a convex function and , then . E( ),E[f( )]X X <∞ E[f( )] f[E( )]X X≥

Proof: We assume that f(  is twice differentiable and thus use the Tyler Series Expansion to expand 

 around the mean .  

)x

f( )x E( )Xµ =
21

2f( ) f( ) f'( )( ) f"( )( ) f( ) f'( )( ) <By convexity>x x x xµ µ µ µ µ µ µ µ≅ + − + − ≥ + −  

This implies that . f( ) f( ) f'( )( )X Xµ µ≥ + − µ
X

X

1

Taking expectation on both sides leads to E[f( . QED )] f[E( )]X ≥
 

Example 1.14 In general, we have . An extreme case of this inequality is given in the 

example below. Let X  stand for the position of a drunk person wandering uniformly over the width of 

the highway and  stand for the result of either the drunk person is alive or dead. Apparently, we have 

, and . But we also have E[ . How different are f[E(  

and ? Life and death. 

f[E( )] E[f( )]X ≠

f

E( ) center lineX = f[E( )] aliveX = f( )] deadX = )]X

E[f( )]X

 

1.7 Types of Convergence 

 

Definition 1.24 A sequence of random variables  is said to converge almost surely  or with 

probability 1 to  if Pr . We denote convergence almost surely by . 

:nX n ≥

X ( ) 1nX X→ = nX X→
 

Example 1.15 Let’s spin a spinner once. The final angle will be within [0 , and the gambler can 

choose one of the following game. In game n , the gambler gets  if the final angle is within 

, 360)

$2n 360[0, ]n . Let 

 denote the event that the gambler wins in game n . If we define  then  almost surely. 

Why? If the final angle is in (0 , then we have  for large enough n . (Note that if the final 

angle is 0, then .) Furthermore, .  

nX 0X = nX X→
, 360) 0nX =

he final angle is between (0,360) 10nX ≠ Pr(T )=
In the same time, we have 360 2E( ) 2 Pr( ) 0 Pr( ) 2 ( / 360) nn n

nn n nX X win X lose= ⋅ = + ⋅ = = = n

1

. Note that 

. lim E( )nn
X

→∞
→ ∞

 

Definition 1.25 A sequence of random variables  is said to converge in probability to X  

( ) if for all , 

:nX n ≥
P

nX X→ 0ε > lim Pr( ) 0nn
X X ε

→∞
− ≥ = .  
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1

X

Definition 1.26 A sequence of random variables  is said to converge in distribution to X  

( ) if for all x  such that Pr , . 

:nX n ≥

nX ⇒ ( ) 0X x= = lim Pr( ) Pr( )nn
X x X x

→∞
≤ = ≤

 

Theorem 1.4 If  almost surely then . If  then .  nX X→ P
nX X→ P

nX X→ nX X⇒

 

Example 1.16 Toss a sequence of fair coins.  if the  toss is a head and  if it is a tail. 

Hence 

1nX = thn 0nX =
1
2Pr( 1) Pr( 0)n nX X= = = =  and , where  has the distribution function of: nX ⇒ X X

1
2

0 0

( ) 0 1

1 1

x

F x x

x

⎧⎪ <⎪⎪⎪⎪= ≤ <⎨⎪⎪⎪ ≥⎪⎪⎩ .

.

 

 

1.8 Probability Limit Theorem 

 

Theorem 1.5 The Strong Law of Large Numbers 

Let  be i.i.d. r.v.s with mean . Let , then 1 2, ,..X X µ <∞
1

n
n ii

S X
=

=∑ lim nS
n

n
µ

→∞
=  almost surely. 

 

Example 1.17 Let  if the  toss is a head and  if it is a tail. We then have 1iX = thi 0nX =
1 ... 1

21E( )nn X XS
n n X+ += ⇒ = . 

 

Theorem 1.6 The Central Limit Theorem 

Let  be i.i.d. r.v.s with mean  and variance . Let , then 1 2, ,..X X . µ <∞ 2σ <∞
1

n
n ii

S X
=

=∑
(0,1).nS n

N
n
µ

σ
− ⇒  

 

Comment 1.12 The intuition behind the Central Limit Theorem is that although  is nS n  times more 

variable than , but the mean of  grows even faster. That is, the variance of  is increasing as n  

becomes larger, but not as fast as the mean does.  
1X nS nS
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CHAPTER 2 STOCHASTIC PROCESSES AND BROWNIAN MOTION 

 

Definition 2.1 A stochastic process is an indexed collection of random variables, i.e., , 

where T  is some index set. We often interpret t  as time. Some common sets T  are  

(discrete time) and  (continuous time). A realization of X  is referred to as a sample path.  

{ ( ) : }X X t t T= ∈

{0,1,2,...}T =
[0, ]T = ∞

 

Example 2.1 Suppose that  and (0,1)Z N∼ ( ) , 0Y t tZ t= ∀ ≥ . Then we have a stochastic process 

 and .  { ( ) : 0}Y t t ≥ ( ) (0, )Y t N t∼

 

Theorem 2.1 (Kolmogrov’s Extension Theorem) The distribution of a stochastic process 

 is uniquely determined by the finite dimensional distributions { ( ) : }X X t t T= ∈

1 2 1 1 2 2( , ,..., ) Pr( ( ) , ( ) ,..., ( ) ),n n nF x x x X t x X t x X t x= ≤ ≤ ≤ 1 2 ... nt< < <

1

)

} ]

for all t t  and all  and 

. (Note that although the distribution is uniquely determined, the sample paths are not. The 

proof of this theorem can be found in Billingsley.) 

n

1 2, ,..., nx x x

 

Definition 2.2 A continuous time stochastic process  is said to have independent 

increments if for all n  and , the random variables , , …, 

 are independent. In other words, the magnitude of the change of the process over a time 

interval is independent of the magnitudes of the changes in the process over other non-overlapping time 

intervals. 

{ ( ) : }X X t t T= ∈

0 1 ... nt t t< < < 01( ) ( )X t X t− 2( ) ( )X t X t−

1( ) ( )n nX t X t −−

 

Definition 2.3 A continuous time stochastic process  is said to have stationary 

increments if  has the same distribution as  for all . In other words, 

the distribution of the change in the process over any time interval depends only on the duration of that 

interval.  

{ ( ) : 0}X X t t= ≥

( ) (X t s X s+ − ( ) (0)X t X− , 0s t ≥

 

Comment 2.1 If a process has stationary and independent increments, then for  we have 

 as an i.i.d. sequence, where .  

0t∆ >

{ : 0nX n ≥ [ ] [( 1)nX X n t X n t= ⋅∆ − − ⋅∆

 

Theorem 2.2 If the continuous time stochastic process  has stationary and independent 

increments with , then the distribution of the r.v.s. , uniquely specifies the 

distribution of the stochastic process .  

{ ( ) : 0}X X t t= ≥

(0) 0X = ( ), 0X t t∀ >

{ ( ) : 0}X X t t= ≥

 

Example 2.2 Suppose that . We have ( ) Poisson( )X t tλ ⋅∼ 1
!Pr[ ( ) ] ( ) , 0,1,....t n

nX t n e t nλ λ−= = =  For 

, we have  1 2t t t< < 3

 

1 2 3

1 2 1 3 2

1 2 1 3 2

Pr[ ( ) 1, ( ) 3, ( ) 6]

Pr[ ( ) (0) 1, ( ) ( ) 2, ( ) ( ) 3] <define (0) 0>

Pr[ ( ) (0) 1] Pr[ ( ) ( ) 2] Pr[ ( ) ( ) 3] <by independent increments>

X t X t X t

X t X X t X t X t X t X

X t X X t X t X t X t

= = =

= − = − = − = =

= − = ⋅ − = ⋅ − =
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 1 2 1 3 2

1 2 1 3 2

( ) 2 ( ) 3
1 2 1 3 2

Pr[ ( ) 1] Pr[ ( ) 2] Pr[ ( ) 3] <by stationary increments>

[ ( )] [ ( )]
.

1! 2! 3!

t t t t t

X t X t t X t t

e t e t t e t tλ λ λλ λ λ− − − − −

= = ⋅ − = ⋅ − =

− −
= ⋅ ⋅

 

 

Definition 2.4 A stochastic process  is said to be a Brownian motion process with drift 

 and variance  if the following three conditions hold: 

{ ( ) : 0}X X t t= ≥

µ ∈ R 2 0σ >
(1)  (so we have ) 2( ) ( , ), 0X t N t t tµ σ ∀ ≥∼ (0) 0X =

(2)  has stationary independent increments { ( ) : 0}X X t t= ≥

(3)  has continuous sample paths. { ( ) : 0}X X t t= ≥

 

Comment 2.2 (1) and (2) can be shown to imply (3) almost surely but we will assume (3) everywhere. If 

 and  then  is standard Brownian motion, which is often also called the 

Weiner process. Also note that financial time series is not geometric Brownian motion, but Geometric 

Brownian motion is a good approximation of financial time series. Brownian motion is infinitely bumpy, 

without any flat portions, everywhere continuous but nowhere differentiable. 

0µ = 2 1σ = { ( ) : 0}X X t t= ≥

 

Example 2.3 Let { :  be an i.i.d. sequence with 1}iY i ≥ 1
2Pr( 1) Pr( 1)i iY Y= = = − = . We have  

and . Let  and . Let’s define further 

E( ) 0iY =

Var( ) 1iY = 0 0S = 1 ...nS Y Y= + + n ⎣ ⎦
1( )n nt

X t S= , where  is a 

floor function taking the smallest integer of nt . We also define 

⎣ ⎦nt

⎣ ⎦
2( )n nt

X t S n= .  

 

For given t , we have  
⎣ ⎦ ⎣ ⎦2

1lim ( ) lim lim E( ) 0 <by Strong Law of Large Numbers almost surely>,nt ntS S
nt ntnn n n

X t t t t Y
→∞ →∞ →∞

= ⋅ = ⋅ = =  

which is not very interesting. 

 

Redefine 
⎣ ⎦

( )n nt
X t S n= . We get that ⎣ ⎦ ⎣ ⎦ E( )E 0nt i

S nt Y

nt nt
⎡ ⎤ = =⎢ ⎥⎣ ⎦

 and ⎣ ⎦ ⎣ ⎦ 1Var ntS nt
ntnt
⋅⎡ ⎤ =⎢ ⎥⎣ ⎦
. By the Central Limit 

Theorem, we have ⎣ ⎦ (0,1)ntS

nt N⇒  as n , which implies that  as n . Now we 

claim that { (  has approximately stationary independent increments. Why? 

→ ∞ ( ) (0, )nX t N t⇒ → ∞

) : 0}nX t t ≥

 

The increments are given by 
2 1 1

1 1
2 1 1

( ) ( )n n n nnt nt nt nt
X t X t S S Y Y

2
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎛ ⎞ ⎛⎟ ⎟⎜ ⎜− = − = + ⋅ ⋅ ⋅+⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝
⎞
⎠

)

. Clearly, the 

independence of  implies the independence of increments. Since the term in bracket depends on only the 

number of terms, which is a function of , we have stationary increments. Therefore, we conclude 

that { (  is a Brownian motion. 

iY

2 1(t t−

) : 0}nX t t ≥

 

Proposition 2.1 Parts (1) and (2) in Definition 2.4 are equivalent to  

(1) ; 2( ) ( ) [ ( ), ( )] , 0,X t X s N t s t s s t s tµ σ− − − ∀ ≥ <∼

(2) { (  has independent increments; and ); 0}X t t ≥

(3) . (0) 0X =
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Proof: It is easy to show that the two parts in definition 2.4 imply the proposition 2.1. If part (1) in the 

proposition 2.1 holds, then we know the increments are stationary, and thus we have definition 2.4. 

 

Proposition 2.2 Parts (2) and (3) of Definition 2.4 together with  imply part (1) of Definition 

2.4. (The proof is hard and omitted here.) 

(0) 0X =

 

Proposition 2.3 Suppose { (  is a Weiner process. For all , let , then 

 is Brownian motion with drift  and variance . 

); 0}W t t ≥ 0t ≥ ( ) ( )X t t W tµ σ= +

{ ( ); 0}X t t ≥ µ ∈ R 2 0σ >
Proof: Let’s check the three qualifications for a Brownian motion. The continuous sample path follows 

from the linear transformation . Furthermore, we have ( ) ( )X t t W tµ σ= +

  
( ) ( ) ( ) [ ( ) ( )]

( ) [ ( )] <by stationary increments of Weiner process>

( ),

X t X s t s W t W s

t s W t s

X t s

µ σ

µ σ

− = − + −

= − + −

= −

which implies that  are stationary increments. Increments  are also independent 

because of the independence of increments in Weiner Process. QED 

( ) ( )X t X s− ( ) ( )X t X s−

 

Example 2.4 Suppose X  is a ( , -Brownian motion. Let  and )µ σ 0a > 21( ) ( ),aW t X a t t= ∀ . (a) Show that 

 is also a Brownian motion and give its parameters. (b) How would the formula for W  need to be 

adjusted for W  to be a ( , -Brownian motion? 

W

)µ σ
 

(a) Clearly, we have  and W  has a continuous sample path following the continuity of the 

sample path of Brownian motion X .  

(0) 0W =

2 2 21 1( ) ( ) [ ( ) ( )] [ ( )]a aW t W s X a t X a s X a t s− = − = −  implies stationary increments of W . W  also has 

independent increments, following independent increments of X . 
2 2 2 2 21 1( ) ( , ) ( ) ( ) ( , ) ( , )a aX t N t t W t X a t N a t a t N at tµ σ µ σ µ σ⇒ = =∼ ∼ 2  implies that W  is a ( , -Brownian 

motion. 

)aµ σ

(b) Clearly . We need adjust  in the following way E[ ( ) ( )] (1 )X t W t a tµ− = − ( )W t
21( ) ( ) (1 )aW t X a t a tµ= + −  to achieve a ( , -Brownian motion. )µ σ
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CHAPTER 3 POISSON PROCESSES 

 

Definition 3.1 A counting process { (  is a stochastic process where , and every sample 

path consists of integer-valued, non-decreasing random variables. Here  represents the number of 

events that have occurred by time . 

) : 0}N t t ≥ (0) 0N =

( )N t

, 0t t ≥

 

Definition 3.2 A Poisson process, { ( , is a counting process with stationary independent 

increments where the r.v.  is Poisson distributed with mean  for all , i.e., 

) : 0}N t t ≥

( )N t tλ 0t ≥
1
!Pr[ ( ) ] ( )t

nN t n e tλ λ−= = n

u

, for  0,1,2,....n =

 

Comment 3.1 λ  is called the rate of the process. We claim that the “stationary” condition in the 

definition is redundant. Proof?  

Using m.g.f. approach, we can prove that the sum (or difference) of two independent Poisson r.v.s. is a 

Poisson r.v. with parameter that equals to the sum (or difference) of the two original parameters. We also 

have  for the counting process. If the increments are 

independent, then we have , where  is the moment generating 

function. Hence we have 

( ) [ ( ) ( )] [ ( ) (0)]N t s N t s N t N t N+ = + − + −

( ) ( ) ( ) ( ) (0)
( ) ( ) ( )

N t s N t s N t N t N
u uψ ψ ψ

+ + − −
= ⋅ ()ψ ⋅

 
( )( 1)

( ) ( 1)
( )( 1)( ) ( )

( )

( )
( ) ,

( )

u
u

u

t s e
N t s s e

t eN t s N t
N t

u eu e
u e

λ
λ

λ

ψ
ψ

ψ

+ −
+ −

−+ −
= = =  

which doesn’t depend upon t . Therefore, the increments of Poisson process are stationary. QED 

 

Definition 3.3 The function  is said to be , read as “of order t ”, if . f ( )o t
0

lim f( )/ 0
t

t t
→

=

 

Comment 3.2 The function f is of order t , or f( , meaning that  goes to zero faster than t  

does. For example, t , but t o . 

) ( )t o t= f( )t
2 ( )o t= ( )t≠

 

Theorem 3.1 A counting process is a Poisson process if and only if it satisfies the following three 

assumptions: 

(1) The process has stationary and independent increments; 

(2) The probability of one event occurring in an interval of length t  is , i.e., is approximately 

proportional to the length of that interval. The proportionality constant λ  is constant over time 

(stationary) and may be considered as the rate at which events occur. 

( )t o tλ +

(3) The probability of more than one event occurring in an interval of length t  is . ( )o t

Proof: (a) The definition of a Poisson process implies the theorem above. (Note that we need expand  

around  to reach the goal.) 

te λ−

0t =

(b) A rigorous proof for the other direction is given in the book. Here we provide an intuitive version. 

Let’s split the interval of length t  into n  pieces so that t
nt∆ = . Let  if one event occurs in an 

interval [(  and  otherwise, where . It is true that since 

1n
iX =

1) , )i t i− ∆ ∆t n0n
iX = 1,2,...,i =

1
( )

n n
ii

N t X
=

≥∑
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n

maybe more than two events occur in each time interval  and an event may occur at time t , the last 

boundary point. 

t∆

 

The property (3) of the theorem implies that . Then the property of independent 

increments implies that  are independent for . Apparently,  is distributed as a Bernoulli 

r.v. The property (2) of the theorem implies that 

( )
n n

ii
N t X≈∑

n
iX 1,...,i = n

iX

Pr( 1)n t
niX tλ λ= ≅ ∆ = ⋅ . Hence  is 

distributed as a Binomial with parameters 
1

( )
n n

ii
N t X

=
=∑

( , )tnn λ  since  are independent Bernoulli r.v.s. Let n , 

we have 

n
iX → ∞

Bin( , ) Poisson( )t
nn λ λ→ t . Why? The moment generating function of Bin( , )tnn λ  is 

( 1)( 1 ) [1 ( 1)]
uu n u n tt t t

n n ne e eλλ λ λ −+ − = + − → 0→e  as n , because we have 
0

lim(1 )n
n

n
eαα

→
+ = . 

 

Theorem 3.2 Let  be a non-negative continuous r.v. Then  has the memoryless property if and only 

if X  is exponentially distributed, i.e., Pr  for all  if and only if 

 for some . 

X X

( | ) Pr( )X t s X s X t> + > = > ,s t ≥ 0

Pr( ) 1 tX t e λ−≤ = − 0λ >
Proof: Here we discuss the result that an exponential distribution has a memoryless property. 

( )

Pr( , ) Pr( )
Pr( | )

Pr( ) Pr( )

Pr( ). QED
t s

t
s

X t s X s X t s
X t s X s

X s X s

e e X t
e

λ
λ

λ

− +
−

−

> + > > +> + > = =
> >

= = = >
 

(The proof for the other direction is on page 37 of the text.) 

 

Theorem 3.3 Let { (  be a counting process. Let  be the time between the (  and  

event (  inter-event time) for . Then  are i.i.d. exponential r.v.s. with parameter 

 and mean 

) : 0}N t t ≥ nX 1)thn − thn
thn 1,2,...n = , 1,2,...iX i =

λ 1
λ  if and only if { (  is a Poisson process with rate λ . ) : 0}N t t ≥

Proof: We prove that a Poisson process { (  implies exponential .  ) : 0}N t t ≥ , 1,2,...iX i =
st 0

1Pr( ) Pr(1  event occurs after ) Pr[ ( ) 0] ( )sX s s N s e s eλ λλ− −> = = = = = s

X
X s e t dt eλ∞ − −> = =∫ 2X

, i.e.,  is exponential with 

parameter . 
1X

λ

2 1 1Pr( | ) Pr{0 events in ( , ] | }

Pr{0 events in ( , ]} <by independent increments>

Pr{0 events in (0, ]} <by stationary increments>

Pr[ ( ) 0] .s

X s X t t t s X t

t t s

s

N s e λ−

> = = + =

= +

=

= = =

 

Hence , i.e.,  is exponential with parameter λ . 
12 0

Pr( ) f ( )s sλ

We can use the method of induction to prove the claim. QED 

 

Example 3.1 For a Poisson process show, for s , that  t<

( )( ) ( )Pr[ ( ) | ( ) ] 1 , 0,1,..., .k n kn s s
t tk

N s k N t n k n−= = = − =  

Proof: For  we can write , 0,1,..., ,s t k n< =

 Pr[ ( ) , ( ) ] Pr[ ( ) , ( ) ( ) ]
Pr[ ( ) | ( ) ]

Pr[ ( ) ] Pr[ ( ) ]
N s k N t n N s k N t N s n k

N s k N t n
N t n N t n
= = = − = −= = = =
= =
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 ( )( ) ( )
( )( ) [ ( )]

! ( )!

( )
!

Pr[ ( ) ] Pr[ ( ) ( ) ]
1 . Q

Pr[ ( ) ]

s k t s n k

t n

e s e t s
k n kk n k n s s

t tke t
n

N s k N t N s n k
N t n

λ λ

λ

λ λ

λ

− − − −

−

−
−−= ⋅ − = −= = = −

=
ED  

 

Example 3.2 Let { (  be a Poisson process with rate λ . Calculate E[ . ) : 0}N t t ≥ ( ) ( )]N t N t s⋅ +

  2 2

2 2

E[ ( ) ( )] E{ ( ) [ ( ) ( ) ( )]}

E{ ( ) [ ( ) ( )]} E[ ( )] E[ ( )] E[ ( ) ( )] E[ ( )]

E[ ( )] E[ ( )] Var[ ( )] {E[ ( )]} ( ) [1 ( )].

N t N t s N t N t s N t N t

N t N t s N t N t N t N t s N t N t

N t N s N t N t t s t t t s tλ λ λ λ λ λ

⋅ + = ⋅ + − +

= ⋅ + − + = ⋅ + − +

= ⋅ + + = ⋅ + + = + +

 

Theorem 3.4 The time until the  event in a Poisson process is a  r.v. The density of a 

, where  is a positive integer, is 

thn Gamma( , )n λ

Gamma( , )n λ n
1( )

( 1)!

t ne t
n

λλ λ− −

−
. 

Proof: We know that the time until  event is equal to , where  is defined in Theorem 3.3, 

and that they are independent  r.v.s. We have known from Lemma 1.4 that the sum of n   

is a Ga . QED 

thn
1

n

ii
X

=∑ iX

Exp( )λ Exp( )λ

mma( , )n λ
 

Lemma 3.1 Let { (  be a Poisson process with inter-event times . Conditioned on 

, the r.v.  is uniform on [0 . 

) : 0}N t t ≥ 1 2, ,..X X .

( ) 1N t = 1X , ]t

Proof: Let  and suppose the first event occurs before s . Conditioned on , we have 0 s t< < ( ) 1N t =

1
1

(

Pr( , ( ) 1) Pr[ ( ) 1, ( ) ( ) 0]
Pr( | ( ) 1)

Pr[ ( ) 1] Pr[ ( ) 1]
Pr[ ( ) 1, ( ) 0]

<Stationarity of Increments>
Pr[ ( ) 1]

Pr[ ( ) 1] Pr[ ( ) 0]
<Independence of Increments>

Pr[ ( ) 1]
se

X s N t N s N t N s
X s N t

N t N t
N s N t s

N t
N s N t s

N t
λ−

≤ = = − =≤ = = =
= =

= − ==
=

= ⋅ − ==
=

=
( ) 0) [ ( )]

1! 0 !
( )

1!

. QED
t s

t

s e t s

e t

s
t

λ

λ

λ λ

λ

− −

−

−⋅ =

 

 

Comment 3.3 A natural extension to Lemma 3.1 is that conditioned on , the inter-event times 

 should be uniformly distributed with the restriction that . A formal result follows. 

( )N t n=

1,... nX X 1 ... nX < < X

..,=

e.

 

Definition 3.4 Consider any n  r.v.s. . The  order statistic,  of these r.v.s. is the  

smallest among them, i n . 
1 2, ,... nY Y Y thi

( )i
Y thi

1,2,.

 

Lemma 3.2 Suppose that  are i.i.d. continuous r.v.s. with common p.d.f. f( . Then the joint 

p.d.f. of their order statistics  is given by 
1 2, ,..., nY Y Y )y

(1) (2) ( )
, ,...,

n
Y Y Y

  
(1) (2) ( )

1 2 1 2

1 2, ,...,

! f( )f( ) f( ) if ...
( , ,..., )

0 otherwisn

n n

nY Y Y

n y y y y y y
g y y y

⎧ ⋅⋅ ⋅ < < <⎪⎪⎪= ⎨⎪⎪⎪⎩
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}Proof: We have { }  if and only if  is some permutation of 

. Each permutation is equally likely with probability  and there are  such 

permutations. So the result follows. QED 

1 2(1) (2) ( )
, ,... { , ,..., }nn

Y Y Y y y y= { (1) (2) ( )
, ,...

n
Y Y Y

1 2{ , ,..., }ny y y 1 2f( )f( ) f( )ny y y⋅ ⋅ ⋅ !n

 

Comment 3.4 If we integrate the joint density , taking care of the range condition, 

, we can get the marginal density for the  smallest r.v. . That is:  
1 2( , ,..., )ng y y y

1 2 ... ny y y< < < thi iy

 1!
( 1)!( )!( ) [ ( )] [1 ( )] f( ).i n in
i n ii i i i ig y F y F y y− −
− −= −  

 

Theorem 3.5 Let { (  be a Poisson process and let  be the time to the  event, , 

then given that , the n  event times  have the same distribution as the order statistics 

corresponding to n  independent r.v.s. uniformly distributed on the interval [0 . 

) : 0}N t t ≥ nS thn 1,2,...n =

( )N t n= 1 2, ,... nS S S

, ]t

Proof: Suppose . Define  such that all n  events fall into n  intervals 

with length h , i.e., . (Of course we can let the event occurring intervals 

be centered around , but it will only complicate our procedure but not altering the result.) To 

ensure that these time intervals won’t overlap, we impose .  

1 2 10 ... n nt t t t +< < < < < = t

++ < ∀

0h >

1 1 2 2( , ],( , ],...,( , ]n nt t h t t h t t h+ + +

1,.... nt t

1,i it h t i

 

Using the definition of p.d.f. f(  of a continuous r.v. , we have )x X
1 1

0 0
f( ) '( ) lim [ ( ) ( )] lim Pr[ ( , )]h hh h
x F x F x h F x X x x h

→ →
= = + − = ∈ + . 

Here, we have 

1 2

1
1 1 1 1 2 2 2, ,..., | ( ) 0

f ( ,..., ) lim Pr{ ( , ], ( , ],... ( , ] | ( ) }n
n

n n n nhS S S N t n h
t t S t t h S t t h S t t h N t n

= →
= ∈ + ∈ + ∈ + =  

1 1 1 2 2 2

0

1 1

0

1 1

0

Pr{ ( , ], ( , ],..., ( , ], ( ) }
lim

Pr[ ( ) ]
Pr{one event in ( , ],...,one event in ( , ], zero event elsewhere}

lim
Pr[ ( ) ]

Pr{one event in ( , ]
lim

n n n
nh

n n
nh

h

S t t h S t t h S t t h N t n
h N t n

t t h t t h
h N t n

t t h

→

→

→

∈ + ∈ + ∈ + =
=

⋅ =
+ +

=
⋅ =

+
=

( ) 0( ) ( ) ( )
1! 1! 0 !

( )0
!

!

0

} Pr{one event in ( , ]} Pr{zero event elsewhere}
Pr[ ( ) ]

lim

( ) !
lim .

h h t nh

t h

n

n n
n

e h e h e t nh

e tnh
n

nh
t n

tnh

t t h
h N t n

h
n

h

λ λ λ

λ

λ λ

λ

− − − −

−

−

→

→

⋅⋅ ⋅ + ⋅
⋅ =

⋅ ⋅ ⋅ ⋅=
⋅

⋅= =

 

It is apparent that the density of  is (0, )U t 1
t , and the order statistic of  is (0, )U t !

n
n
t , by Lemma 3.2. 

Therefore  have the same distribution as the order statistics corresponding to n  independent 

r.v.s. uniformly distributed on the interval [0 . QED 
1 2, ,... nS S S

, ]t

 

Theorem 3.6 Decomposition of Poisson Processes Suppose that events are being generated by a Poisson 

process of rate λ . Whenever an event occurs it is assigned to one of k  streams with the  stream 

 being chosen with probability , independently of any previous assignments. 

thi

(1 )i k≤ ≤
1

(
k

i ii
p p

=
=∑ 1)
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Then the  stream is itself a Poisson process of rate . Furthermore, the streams are independent of 

each other. 

thi ipλ

Proof for the case of two sub-streams: Let { (  be a Poisson process with rate λ . Let 

 and  be the two sub-streams of the original Poisson process and the 

probabilities are p  and 1 . We need to show that both sub-streams are Poisson process. 

) : 0}N t t ≥

1{ ( ) : 0}N t t ≥ 2{ ( ) : 0}N t t ≥

p−

(a) Independent increments of sub-processes follow immediately from the independent increments of the 

original process, given that  is constant.  p

(b) p.d.f. of the sub-streams: 

 ( )
(1 )

1 2

1 20

1 2

( )
( )!

( ) [ (1 ) ]
! !

Pr[ ( ) , ( ) ]

Pr{ ( ) , ( ) | ( ) } Pr[ ( ) ]

Pr{ ( ) , ( ) | ( ) } Pr[ ( ) ]

(1 ) <See explanation below>

Poisso

t n m

pt n p t m

k

e tn m n m
n n m

e pt e p t
n m

N t n N t m

N t n N t m N t k N t k

N t n N t m N t n m N t n m

p p
λ

λ λ

λ

λ λ

− +

− − −

∞

=

+
+

−

= =

= = = = ⋅ =

= = = = + ⋅ = +

= −

= ⋅

=

∑

1 2 1

n( ) Poisson[ (1 ) ]

Pr[ ( ) ] Pr[ ( ) ] <Independence of ( ) and ( )>

pt p t

N t n N t m N t N t

λ λ⋅ −

= = ⋅ = 2

 

 

Given that there are n  events occurring between [0  in the original Poisson process, the probability 

of getting n  numbers of outcome 1 and m  numbers of outcome 2 is the density of a Binomial 

distribution. We make the rough conclusion here that both sub-streams are Poisson processes, with 

parameter  and , respectively. Strictly speaking, we should derive the marginal density from 

the joint density and confirm that the each of the marginal density is indeed the p.d.f. of Poisson r.v. We 

also skipped the proof for the independence of two sub-streams, which is kind of cumbersome, without 

adding new insights.  

m+ , ]t

pλ (1 )pλ −

 

For the case of more sub-streams, we use the same technique except that we’ll consider a multi-nomial 

distribution instead.  

 

Example 3.3 Customers arrive at a restaurant according to a Poisson process with rate 60 per hour. Each 

customer is either male or female with equal probability, independent of everything else. Suppose that at 

a certain hour 50 men arrived at the restaurant. What is the expected number of women arrivals? 

 

Because the two sub-streams (male or female customers) are independent from each other, the female 

customers’ arrival follows a Poisson process with parameter 1
260 30⋅ =  per hour. Therefore, the expected 

female customer arrivals will be 30, despite the fact that there are substantially more male customers 

arrived an hour ago. 

 

Example 3.4 Cars pass a point on the highway at a Poisson rate of one per minute. If 2% of the cars on 

the road are Mercury, then (a) what is the probability that at least two Mercury pass by during an hour? 
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3374N N N≥ = − = − = =

E(5 0.98 60) 63.8 64N N N N N= = + = = + × = ≈

(b) given that five Mercury have passed by in a given hour, what is the expected number of cars to have 

passed by in that same hour? (c) if 25 cars have passed by in an hour, what is the probability that 2 of 

them were Mercury? 

 

Let  be the number of cars through time t  (in minutes), then { (  is a Poisson process 

with rate one per minute. Let  if the car passing by is a Mercury and  otherwise. We also 

know that Pr . Assume that the event  is independent of the event .  

( )N t ) : 0}N t t ≥
1A = 0A =

( 1) 0.02A = = 1A = 0A =
(a) Let  be the number of Mercury through time t , then  and 

. 
1( )N t 1( ) Poisson(0.02 )N t t∼

1 1 1Pr[ (60) 2] 1 Pr[ (60) 0] Pr[ (60) 1] 0.

(b) Let  be the number of non-Mercury through time t , then . And thus we 

have . 
2( )N t 2( ) Poisson(0.98 )N t t∼

1 1 2 1E[ (60) | (60) 5] E[ (60) (60) | (60) 5]

(c) . ( )25 2 23
1 2Pr[ (60) 2 | (60) 25] (0.02) (0.98) 0.0756N N= = = =

 

Lemma 3.3 Suppose that events are being generated by a Poisson process of rate λ . Whenever an event 

occurs at time s , it is assigned to one of 2 streams with the first stream being chosen with probability 

, independent of any previous assignments. Let  be the number of events classified type i  

through time t  for . Then  and  are independent Poisson r.v.s. with mean  and 

, respectively, where 

( )p s ( )iN t

1,2i = 1( )N t 2( )N t ptλ

(1 )p tλ − 1

0
( )

t

tp p s= ∫ ds . 

Proof: Conditioned on , let’s consider one of the unordered events. Let S  be the time of 

occurrence for this particular event, conditioned on . Let  be either 1 or 2, depending on 

which stream the event is assigned to. We know that the arrival time S  has a uniform [0  distribution, 

and we also have 

( )N t n=
( )N t n= A

, ]t

 1 1

0 0
Pr( 1) E[Pr( 1 | )] Pr( 1 | ) ( ) .

t t

t tA A S A S s ds p s ds p= = = = = = = ≡∫ ∫  

Hence, we have 

 
( )

1 2 1 2

( )
( )!

Pr[ ( ) , ( ) ] Pr[ ( ) , ( ) | ( ) ] Pr[ ( ) ]

(1 ) Poisson( ) Poisson[ (1 ) ]. QED
t n me tn m n m

n n m

N t n N t m N t n N t m N t n m N t n m

p p pt p t
λ λ λ λ

− ++
+

= = = = = = + ⋅ = +

= − = ⋅ −
 

 

Example 3.5 Suppose that calls arrived at an phone exchange center according to a Poisson process with 

rate λ  per minute. We are interested in the calls made between 11:00pm and 11:10pm in the example, 

and let’s assume that at time 11 , a fraction, : 00pm t+ 1000.1 t− , of the calls is for Peter, where 

. What’s the distribution of the calls for Peter during this particular “crazy” ten minutes? 0 t≤ ≤ 10

 

Clearly, the calls for Peter during this ten minutes period follow a Poisson process with parameter , 

where  is defined as 

10pλ ⋅

p
10

1 1
10 100

0 0
( ) (0.1 ) 0.05

t
s

tp p s ds ds= = − =∫ ∫ . Hence the distribution of the calls 

during this ten minute period is a 2Poisson( )λ . 
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X

Theorem 3.7 If  are independent exponential r.v.s. with parameters , respectively, 

then  is exponential with parameter . We also have Pr , 

i.e., the probability that  is the minimum of the ’s, equals 

1 2, ,..., nX X X 1 2, ,..., nλ λ λ

1 2min( , ,..., )nM X X= 1 ... nλ λ λ= + + ( )jM X=

jX iX ,1j j n
λ
λ ≤ ≤ . 

Proof: (a) To prove , we have 1Pr(min )n x
ii X x e λ−

= > =

  Pr( ) Pr( , ) Pr( ) .i ix x
i ii i

M x X x i X x e e eλ λ− − ∑ −> = > ∀ = Π > = Π = = xλ

(b) To prove Pr( , ) j

j iX X i j
λ
λ< ∀ ≠ = , we have 

 ( )

( )

0

Pr( ) Pr( , ) E[Pr( , | )].

Pr( , | ) Pr( ) .

E[Pr( , | )] . QED

j j

jj j

j j i j i

x x
j i j ii j i j

x x
j i j j

M X X X i j X X i j X

X X i j X x X x e e

X X i j X e e dx

λ λ λ

λλ λ λ
λλ

− − −

≠ ≠
∞

− − −

= = < ∀ ≠ = < ∀ ≠

< ∀ ≠ = = Π > = Π =

< ∀ ≠ = ⋅ =

j

∫

 

 

Theorem 3.8 Recomposition of Poisson Processes Suppose we have k  streams of events each generated 

independently according to a Poisson process with the  stream (1  having rate . Whenever 

an event in one of these streams occurs it is assigned to a new combined stream. This new stream is itself 

a Poisson process with events being generated at rate . The probability of an event in the 

combined stream coming from stream i  is 

thi )i k≤ ≤ iλ

1

k

ii
λ λ

=
=∑

,1i i kλ
λ ≤ ≤ .  

Proof: The independent increments of  imply the independent increments of the combined stream 

. To show that , let  be the m.g.f. of . Hence, we have 

( ),iN t i∀

( )N t ( ) Poisson( )N t tλ∼ ( )N uψ ( )N t

  

( ) 1

1

1

Poisson( )

( ) E{exp[ ( )]} E{exp[ ( )]}

E{exp[ ( )]} <Independence of ( ), >

exp[ ( 1)] <m.g.f. of ( ), >

exp[ ( 1) ]

exp[ ( 1) ]

( ).

k

iN t i

k

i ii

k u
i ii

ku
ii

u

t

u uN t u N t

uN t N t i

t e N t i

t e

t e

u
λ

ψ

λ

λ

λ

ψ

=

=

=

= =

= ∀

= − ∀

= −

= −

=

∑
∏
∏

∑

The part about probability iλ
λ  follows immediately from Theorem 3.7. 

 

Definition 3.5 A stochastic process { (  is said to be a compounded Poisson process if and only 

if it can be represented as , where  is a Poisson process and  are i.i.d. 

r.v.s. which are all independent of .  

) : 0}X t t ≥
( )

1
( )

N t

ii
X t Y

=
=∑ ( )N t , 1,2,...iY i =

( )N t

 

Lemma 3.4 If  is a compound Poisson process and  has characteristic function  then  has 

characteristic function , where  is the rate of the underlying Poisson 

process. Furthermore,  and . 

X iY ( )Y uφ ( )X t

( )
( ) exp{ [ ( ) 1]}YX t
u t uφ λ φ= − λ

1E[ ( )] E( )X t t Yλ= 2
1Var[ ( )] E( )X t t Yλ=

Proof:  

 ( ) ( )

( ) 1 1
( ) E{exp[ ( )]} E{exp[ ]} E E{exp[ ] | ( )}

N t N t

j jX t j j
u iuX t iu Y iu Y Nφ

= =
.t⎡ ⎤= = = ⎢ ⎥⎣ ⎦∑ ∑  
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We also have  

  

( )

1

1

1

E{exp[ ] | ( ) }

E{exp[ ]} <Independence of  and ( )>

E[exp( )] <Independence of , >

[ ( )] ,

N t

jj
n

j jj
n

j jj
n

Y

iu Y N t n

iu Y Y N t

iuY Y j

uφ

=

=

=

=

=

= ∀

=

∑
∑

∏

and thus  
( )( ) ( )
! !( ) 0 0

( ) E{[ ( )] } [ ( )] < >

exp{ [ ( ) 1]}.

t n n
Y

e tN t n t t u xx
n nY YX t n n

Y

u u u e e

t u

λ λ λ λ φφ φ φ

λ φ

−∞ ∞−
= =

= = =

= −
∑ ∑ e=

 

Therefore, we have 

 

[ ( ) 1]
( )

[ ( ) 1] [ ( ) 1]
( )

" ( )
' ( )( ) ( )

' ( ) ' ( ),  and

" ( ) " ( ) ' ( ) ' (

' ( ) ' ( ) ' ( ).

Y

Y Y

Y

Y

t u
YX t

t u t u
Y YX t

u
u YX t X t

u e t u

u e t u e t u t u

u u t u

λ φ

λ φ λ φ

φ
φ

φ λ φ

φ λ φ λ φ

φ φ λ φ

−

− −

=

= +

= +

)Yλ φ  

If we evaluate both of them at , we get the first and second moments of  as follows: 0u = ( )X t

 
2
1

1

(1 1) 0
1( )

E( )
E( )1 1 1( )

2 2 2
1 1

' (0) E( ) < (0) E( ) 1>

" (0) E( ) E( ) E( )

E( ) ( ) [E( )]

t
YX t

Y
YX t

e t Y e

t Y t Y t Y

t Y t Y

λφ λ φ

φ λ λ λ

λ λ

−= =

= +

= +

=

 

and thus 

  2 2
1 1( ) ( )

E[ ( )] E( ) and Var[ ( )] " (0) [ ' (0)] E( ). QED
X t X t

X t t Y X t t Yλ φ φ λ= = − =

 

Comment 3.5 The compound Poisson process is widely used in the insurance industry. Let  be the 

insurance claim, we can use the Markov’s Inequality or Chernoff Bound to get the tail probabilities. 
iY

 

Example 3.6 An insurance company pays out claims on its rental insurance policies in accordance with a 

Poisson process having rate  per week. If the amount of money paid on each policy is exponentially 

distributed with mean $5,000, what is the mean and variance of the amount of money paid by the 

insurance company in a four week span? Give a bound on the probability that the money paid out on 

policies in a four week span is more than $200,000. 

6λ =

Let  be the number of claims, then we have . Let  be the amount of money 

paid on each cliam, and 

( )N t ( ) Poisson(6 )N t t∼ iY
1

5000exp( )iY ∼ . When , we have  4t =
( )

1
E E[ ( )] E( ) 6 4 5000 $120, 000,

N t

i ii
Y N t Y

=
⎡ ⎤ = ⋅ = × × =⎢ ⎥⎣ ⎦∑  

and 
( ) 2 2
1

2 2

Var E[ ( )] E( ) E[ ( )] {Var( ) [E( )] }

6 4 (5000 5000 ) $1,200, 000, 000.

N t

i i ii
Y N t Y N t Y Y

=
⎡ ⎤ = ⋅ = ⋅ +⎢ ⎥⎣ ⎦

= × × + =

∑ i  

By Markov’s Inequality we have  

 ( ) ( )1
2000001 1

Pr 200000 E 0.6.
N t N t

i ii i
Y Y

= =
⎡ ⎤ ⎡≥ ≤ ⋅ =⎢ ⎥ ⎢⎣ ⎦ ⎣∑ ∑ ⎤

⎥⎦  
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Definition 3.6 A non-homogenous Poisson process, , is a counting process with independent 

increments where the r.v.  is Poisson distributed with mean , for all , i.e., 

{ ( ) : 0}N t t ≥

( )N t ( )m t 0t ≥
( )[ ( )]

!Pr[ ( ) ]
m t ne m t

nN t n
−

= = , for  The function  is called the mean value function of the 

process and is non-decreasing with . Furthermore, we can write 

0,1,2,....n = ( )m t

(0) 0m =
0

( ) ( )
t

m t s dsλ= ∫ , where 

 is called the rate of the process at time s . If  is continuous at t , then ( ) 0sλ ≥ ()λ ⋅ ( ) ( )dm t
dt tλ= . 

 

Comment 3.6 In regular Poisson process, we have flat rate which implies stationary increments. But it 

doesn’t make sense for some problems with peak-time and off-peak-time. If { (  is a non-

homogenous Poisson process, then we have . Note that 

, which implies that a non-homogenous Poisson process doesn’t 

have stationary increments. Following the same argument using m.g.f. approach in Comment 3.1, we can 

prove this result. 

) : 0}N t t ≥
( ) ( ) Poisson[ ( ) ( )]N t s N t m t s m t+ − + −∼

Poisson[ ( ) ( )] Poisson[ ( )]m t s m t m s+ − ≠

 

Theorem 3.9 A counting process is a non-homogenous Poisson process if and only if its satisfies the 

following three assumptions: 

(1) The process has independent increments with ; (0) 0N =
(2) Pr ; [ ( ) ( ) 1] ( ) ( )N t h N t t h o hλ+ − = = +
(3) Pr . [ ( ) ( ) 2] ( )N t h N t o h+ − ≥ =

Proof: We can use the similar technique used in proving Theorem 3.1. Skipped here. 

 

Theorem 3.10 Let { (  be a homogenous Poisson process with rate , and let { (  be 

such that . If an event in  occurring at time t  is accepted with probability 

) : 0}N t t ≥ *λ ) : 0}t tλ ≥
*0 ( )tλ λ≤ ≤ N *

( )tλ
λ

 

independent of everything else, then the process of accepted events is a non-homogenous Poisson process 

with rate function { ( .  ) : 0}t tλ ≥
Proof: Denote as  the number of events accepted, which is often called the “thinned” process. We 

need prove that { (  is a non-homogenous Poisson process with rate function . 

( )M t

) : 0}M t t ≥ ( )tλ
(1) { (  has independent increments, following from independent increments of the original 

process . We also have  since . 

) : 0}M t t ≥
( )N t (0) 0M = (0) 0N =

(2) Let  stand for the case where the event is accepted. 1A =

*

( )*

Pr[ ( ) ( ) 1] Pr[ ( ) ( ) 1, 1]

Pr[ ( ) ( ) 1] Pr( 1) <By independence of  and ( )>

[ ( )] <By >

( ) ( )

t

M t h M t N t h N t A

N t h N t A A N t

h o h

t h o h

λ
λ

λ

λ

+ − = = + − = =

= + − = ⋅ =

= +

= +

Theorem 3.1.(2)
 

(3) Using the same condition, , we have 1A =
  Pr[ ( ) ( ) 2] Pr[ ( ) ( ) 2] ( ) <By >M t h M t N t h N t o h+ − ≥ ≤ + − ≥ = Theorem 3.1.(3)
Therefore, we have { (  as a non-homogenous Poisson process with rate function  by 

Theorem 3.9. QED 

) : 0}M t t ≥ ( )tλ
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Comment 3.7 Theorem 3.10 is very useful in practice in that it helps us generate non-homogenous 

processes from homogenous ones. We can also use the idea of thinned process to patchwork the crowd 

scenes when making films. 

 

Example 3.7 Let  denote the inter-arrival times of events of a non-homogenous Poisson process 

having intensity function . Find out the distribution of  and . Determine whether  are i.i.d. 
1 2, ,...T T

( )tλ 1T 2T iT

Let . 
0

( ) ( )
t

m t v dvλ= ∫
( ) 0[ ( )] ( )

0 !1Pr( ) Pr[ ( ) 0]
m se m s m sT s N s e

− −> = = = = . Hence  and 

. 
1

( )( ) 1 m s
TF s e−= −

1

( )f ( ) ( )m s
T s e sλ−= ⋅

We also have 

  
2 1

[ ( ) ( )]

Pr( | ) Pr[ ( ) ( ) 0 | ( ) 1]

Pr[ ( ) ( ) 0] <Independent Increments>

< ( ) ( ) Poisson[ ( ) ( )]>m t s m t

T s T t N t s N t N t

N t s N t

e N t s N t m− + −

> = = + − = =

= + − =

= + − ∼ + −t s m t

Therefore, we can write 

 
1

[ ( ) ( )] [ ( ) ( )] ( ) ( )
2 0 0 0

Pr( ) f ( ) ( ) ( ) ,m t s m t m t s m t m t m t s
TT s e t dt e e t dt e t dtλ λ

∞ ∞ ∞
− + − − + − − − +> = = =∫ ∫ ∫  

which implies that 

 
2

0
( )( ) ( ) .m t s

TF s e t dtλ− +

−∞
= ∫  

It is now easy to reach the conclusion that  are not i.i.d.  iT

 

Theorem 3.11 Given a non-homogenous Poisson process, { ( , let’s set  for 

all  and . Then  is a homogenous Poisson process with rate . (Note 

that the prime '  stands for prime time, , not first order derivative.) 

) : 0}N t t ≥ 1'( ') ( ( '))N t N m t−=

' (t m t= )

=

' 0t ≥ { '( ') : ' 0}N t t ≥ ' 1λ =
't

Proof: It is clear that  has independent increments. We also have . '( ')N t 1'(0) [ (0)] (0) 0N N m N−= =
Since 

 
( ) 1

1 1

[ ( )] 1 ( ( ')) 11 1
! !

Pr[ '( ') ] Pr[ [ ( ')] ] Pr[ ( ) ,  where ( ')]

{ ,  where ( ')} [ ( ( '))] ( ') ,
m t ne m t m m t n t n

n n

N t n N m t n N t n t m t

t m t e m m t e t
− −

− −

− − − −

= = = = = =

= = = = '
!n

 

we know , i.e., { '  is a homogenous Poisson process with rate 1. QED '( ') Poisson( ')N t t∼ ( ') : ' 0}N t t ≥
 

Comment 3.8 This theorem is very useful when proving stuff. The intuition behind the theorem is that a  

process with slow rate  in certain portion of the regular time would be mirrored, through the mean 

value function , into a process with much faster rate in the corresponding portion of the prime time, 

and vice versa. Hence a non-homogenous Poisson process with varying rates will be smoothed out into a 

homogenous Poisson process with rate 1. 

( )tλ
( )m t

 

Example 3.8 Let { (  be a non-homogenous Poisson process with mean value function . 

Given , show that the unordered set of arrival times has the same distribution as n  i.i.d. r.v.s. 

with c.d.f. being 

) : 0}N t t ≥ ( )m t

( )N t n=
( )
( )( ) ,m x

m tF x x t= ∀ ≤  and . ( ) 1,F x x t= ∀ >
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{ ( ) : 0}N t t ≥  is a non-homogenous Poisson process with mean value function . Let’s set up the 

prime-time  as . Then we have  as a homogenous Poisson 

process with . Given  or , we know that the unordered set of arrival times 

 in prime-time are i.i.d. uniform over [0 . That is  

( )m t

't 1( ')m t t− = 1{ '( ') [ ( ')] : ' 0}N t N m t t−= ≥
' 1λ = ( )N t n= 1'[ ( ')]N m t n− =

', 1,2,...,iS i n= , ']t

 
'
' ' '

Pr( ' ')
1 '

s
t

i

s t
S s

s t

⎧ ≤⎪⎪⎪≤ = ⎨⎪ >⎪⎪⎩ ' .

i
1 ⋅

 

The corresponding arrival times in the regular time  are , hence we can write , 1,2,...,iS i n= 1( ')iS m S−=

  
1 1 -Pr( ' ') Pr[ ( ') ( ')] <nondecreasing () and ()>

Pr( ).
i i

i

S s m S m s m m

S s

− −≤ = ≤ ⋅

= ≤

Finally, we have 

 
( )'

' ( )Pr( )
1 .

m ss
t m t

i

s t
S s

s t

⎧⎪ = ≤⎪⎪≤ = ⎨⎪ >⎪⎪⎩  QED
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=

CHAPTER 4 INTRODUCTION TO QUEUEING THEORY 

 

Definition 4.1 A queueing system consists of arrival streams of customers and a series of servers. If there is 

an infinite amount of space for waiting customers, then when there are more customers than available 

servers, the remaining customers wait in queue. If there is only a finite amount of space for waiting 

customers, then the customers arriving to a full system depart without receiving service, and we speak of 

a loss system. 

 

Single station queues are often described by the notation  (originally due to Kendall), where 

 stands for the arrival distribution ( , 

) and  stands for the service distribution ( , 

). The interarrival times and service 

times are assumed to form i.i.d. sequences that are independent of each other. The number of servers in 

parallel is s  and K  is the number of customers the system can hold. If K  is not given then it is assumed 

to be infinite. Unless otherwise stated, service order is assumed to be First-In-First-Out (FIFO), also 

known as First-Come-First-Serve (FCFS). Other common service disciplines are Last-Come-First-Serve 

(LCFS) and Shortest Expected Processing Time (SEPT).  

/ / /A B s K

A deterministic, exponential(memoryless)D M= =
E Erlang-k, and Generalk G= = B deterministicD =

exponential(memoryless), E Erlang-k, and GeneralkM G= =

 

Theorem 4.1 Consider an  queue with arrival rate λ . Service times have distribution function 

 and mean 

/ /M G ∞

G 1
µ <∞ . Let  be the number of customers in the system at time t . Let ( )X t

1

0
[1 ( )]

t

ttp G= −∫ s ds . Then  is distributed as a Poisson r.v. with mean . The number of 

customers that have left the system after receiving service by time t  is independent of  and is 

distributed as a Poisson r.v. with mean . The limiting distribution of X t  as t  is 

( )X t ttpλ

( )X t

(1 )tt pλ − ( ) → ∞

Poisson( )λµ .  

Proof: Suppose that a customer arrives at time s , where s . Let  stands for the event that this 

customer is still in system at time t . Let T  be the service time with distribution G . Then we have 

t< 1A =

  ( ) Pr[ 1 | arrives at s] Pr( ) 1 ( ).p s A T t s G t s= = = > − = − −
By Lemma 3.3, we know that  is Poisson r.v. with mean , where ( )X t ttpλ

1 1

0 0
[1 ( )] [1 ( )] ,  with .

t t

t ttp G t s ds G u du u t s= − − = − = −∫ ∫  Hence . 
0

( ) [1 ( )]
t

tt tp G u dµ λ λ≡ = −∫ u

Tλ

If we take advantage of the result in Comment 1.6, we also have 

  
0 0

lim ( ) [1 ( )] Pr( ) E( ).
t

t G u du T u duµ λ λ
∞ ∞

→∞
= − = > =∫ ∫

Hence, ( ) E( )1 1
! !lim Pr[ ( ) ] lim [ ( )] [ E( )]t n T

n nt t
X t n e t e Tµ λµ λ− −

→∞ →∞
= = = n , i.e., . ( ) Poisson[ E( )]X t Tλ⇒

 

Example 4.1 Calls arrive to an ambulance station according to a Poisson process at rate λ . The time 

required for an ambulance to serve a call and return to base has mean 1
µ . How many ambulances should 

be stationed at the base to ensure at least  of calls can be answered immediately? %r

We can consider ambulances as servers in queueing theory. Assume that if a call arrives when all 

ambulances are busy, then an outside agent attends to the call. Let  be the number of calls in ( )X t
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progress at time t . We have ( ) Poisson( )X t λ
µ≈ . Suppose that there are n  ambulances stationed, then it 

suffices to find out n  such that Pr[Poisson( ) ] %n rλ
µ ≤ ≥ . 
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X t=

∫

CHAPTER 5 RENEWAL THEORY 

 

Comment 5.1 We have seen before that the inter-event times for the Poisson process are i.i.d. exponential 

r.v.s. A natural generalization is to consider a counting process for which the inter-event times are i.i.d. 

with an arbitrary distribution. Such a counting process is called a renewal process. (The formal definition 

of a renewal process will follow shortly.) We will use the terms “events” and “renewals” interchangeably, 

and so we say that the  renewal occurs at time .  thn nS

 

Since the inter-event times are i.i.d., it follows that at each event the process probabilistically starts over, 

or “regenerates” itself. Note that a Poisson process “regenerates” at all times because of the memoryless 

property. A renewal process doesn’t necessarily regenerate at all times, but it does regenerate at event 

times. Some examples of renewal processes. (1) In reliability theory, we often consider the life time, , of 

some component that is immediately replaced when it defects. (2) In inventory theory, we often consider 

a ( ,  system. When the inventory level falls to s  or below, we order up to S  immediately. If the time 

to refill the inventory, or lead time, is zero, and the demand process has stationary independent 

increments, then we get a renewal process. (3) Let’s consider a  system in queueing theory. Let 

 be the number of customer in the system at time t . When a new customer gets into an empty 

system, the system regenerates the process. 

iX

)s S

/ /G G K

( )X t

 

Much of renewal theory aims to give tools for computing limiting expectations and probabilities. As an 

example, suppose that the lifetime of a part, T , is random and has a density f . When it fails it is 

immediately replaced. Let  be the age of the part in operation at time t  and assume that a new part 

is installed at time 0. What is m t ? 

( )X t

( ) E[ ( )]

If we condition on T , the time of first replacement, then  

  0 0

0 0

( ) E[ ( )] E[ ( ) | ]f( ) E[ ( ) | ]f( ) f( )

E[ '( )]f( ) Pr( ) ( )f( ) Pr( ).

t

t
t t

m t X t X t T s s ds X t T s s ds t s ds

X t s s ds t T t m t s s ds t T t

∞ ∞
= = = = = +

= − + ⋅ > = − + ⋅ >

∫ ∫
∫ ∫

Note that in the derivation above we have used the knowledge that if the part defects at time s  and 

, then the age of the part in operation is , where  is identically distributed as , 

and that if s , then the part doesn’t fail at time t and thus the age of the part in operation is t .  

s t< '( )X t s− '( )X ⋅ ()X ⋅

t>

 

This equation in  is called renewal equation, and it can be solved analytically only in a few special 

cases. But we can compute  under very weak conditions. In particular, we will eventually prove 

(among other things) that if , then , not the intuitive 

( )m t

lim ( )
t

m t
→∞

2E( )T <∞ 2lim ( ) E( )/[2E( )]
t

m t T T
→∞

= 1
2 E( )T . As a 

matter of fact, 2 1
2E( )/[2E( )] E( )T T = T

T

 holds only if , that is the lifetime of the parts is 

deterministic. In addition, the difference between  and 

Var( ) 0T =
2E( )/[2E( )]T 1

2 E( )T  increases with the variance 

of T . 
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Definition 5.1 Let {  be a sequence of non-negative i.i.d. r.v.s. with c.d.f. F  and . 

Let  and . Let , then { (  is a renewal process. 

: 1,2,...}nX n = (0) 1F <

1

n
n ii

S X
=

=∑ 0 0S = ( ) sup{ : }nN t n S t= ≤ ) : 0}N t t ≥

 

Comment 5.2 Suppose that , then we have . Note 

that  can be discrete, continuous or both, but we require that , meaning that we 

don’t want to see all events occurring simultaneously. We write “ ” instead of “max ” here to avoid 

the situation where  doesn’t exist. Note further that , allowing . 

For an example of a r.v.  with , take  with c.d.f. 

54S t S< < ( ) sup{ : } sup{1,2, 3, 4} 4nN t n S t= ≤ = =

iX (0) Pr( 0) 1F X= = <

sup

max( )n 1E( ) (0, ]Xµ = ∈ ∞ 1E( )X =∞

X E( )X =∞ X 1( ) 1 , 1≥xF x x= −

= x dx

. We have 

. (Does 1

1 1
E( ) Pr( )X X x dx x dx

∞ ∞ −= > = ∞∫ ∫ 1
E( ) Pr( )X X

∞
= >∫  hold for positive continuous 

r.v. as well? Yes, see Comment 1.6.) 

 

Comment 5.3 We know that , i.e., , and . Suppose that we 

have 

Pr( 0) 0iX > > (0) 1F < 1E( ) (0, ]Xµ = ∈ ∞
11 ,nnS n= − ∀ ≥ 1 , then we will have . We don’t want to have this situation happen and 

want to have finite . In general, we should have finite number of events by time t , i.e., . 

The formal result is presented in Proposition 5.1. (As a matter of fact, ’s are not i.i.d. in this example 

and they are not random either.) 

(1)N =∞

(1)N ( )N t <∞

iX

 

Proposition 5.1 Let { (  be a renewal process, then  for all  almost surely and 

we can write . 

) : 0}N t t ≥ ( )N t <∞ 0t ≥

( ) max{ : }nN t n S t= ≤

Proof: Let’s define two sets ( ){ :  as }nS
nA nωω µ= → → ∞

t

 and . By the Strong Law 

of Large Numbers, we know  and we want to prove that . Suppose that . 

 implies  since ∞  events occurred before time t .  implies that 

{ : ( ) }B N tωω= =∞

Pr( ) 1A = Pr( ) 0B = A Bω ∈ ∩
Bω ∈ ( )nS ω ≤ Aω ∈

( )  as nS
n nω µ→ → ∞ , which implies in turn that ( )

2
nS
n
ω µ>  for n  large enough. That is, 2( ) n

nS µω >  for n  

large enough, i.e., S  (since ( )  as n nω → +∞ → +∞ 2 0µ > ), which is against . Therefore, 

 and thus 1 . Hence  implies 

, which implies in turn that  Furthermore, we notice that  is 

equivalent to , hence we can write N t . 

( )nS ω ≤ t

t

n S t= ≤

A B∩ = ∅ Pr( ) Pr( ) Pr( )A B A B≥ ∪ = + 0 Pr( ) 1 Pr( ) 0B A≤ ≤ − =
Pr( ) 0B = ( ) , 0, . .N t t a s<∞ ∀ ≥ nS ≤

( )N t n≥ ( ) max{ : }n

 

Propersition 5.2 Let  be a renewal process with renewal distribution F . Let  be the n-

fold convolution of F  with itself. Then . 

{ ( ) : 0}N t t ≥ nF

1Pr[ ( ) ] 1 ( )nN t n F t+≤ = −

Proof:  
  1 1Pr[ ( ) ] 1 Pr[ ( ) 1] 1 Pr[ ] 1 ( ).n nN t n N t n S t F t+ +≤ = − ≥ + = − ≤ ≡ −

We also have 

  1 1 -1( ) Pr[ ] Pr( ) ( ) <Since  and  are independent>

( ). QED
n n n nn n nF t S t S X t F F t X S

F F F t
− −= ≤ = + ≤ = ⊗

= ⊗ ⊗⋅⋅⋅⊗

 

Definition 5.2 Let { (  be a renewal process with renewal distribution F . Define 

, then  is called the renewal function.  

) : 0}N t t ≥

( ) E[ ( )]m t N t≡ ( )m t
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1n

∞

=

Theorem 5.1  and . 
1

( ) ( )nn
m t F t

∞

=
=∑ ( ) , 0m t t<∞ ∀ ≤ <∞

Proof:  
1 1

( ) E[ ( )] Pr[ ( ) ] Pr[ ] ( ).n nn n
m t N t N t n S t F t

∞ ∞

= =
= = ≥ = ≤ =∑ ∑ ∑

To show that , let’s consider the following new process. Let  and 

. Define  for  and  for . Let .  

( ) , [0, )m t t<∞ ∀ ∈ ∞ 0α >
Pr( ) 0nX α≥ > ' 0nX = nX α< 'nX α= nX α≥ '( ) sup{ : ' }nN t n S t= ≤

 

Clearly, the number of events at time 0 is distributed as geometric with mean 
1

1
Pr( ) 1X α≥ − . (Here we use 

the version 1 p
pµ −=  in Comment 1.5.(4) because it is possible that there is zero event at time 0.) Note 

that the number of events at time , is again distributed as geometric with mean ,k kα ∀ ≥ 1
1

1
Pr( )X α≥ . (Here 

we use ther version 1
pµ =  in Comment 1.5.(4) because at each time , the number of events 

must be no less than 1; otherwise all events will be concertrated at time ( , violating 

.) Therefore, we have 

,k kα ∀ ≥ 1

1)k α−

Pr( ) 0nX α≥ >
1

1
Pr( )E[ '( )] ( 1)t

XN t αα≥ ⎢ ⎥≤ ⋅ +⎣ ⎦ . Because of the design of our new 

process, we know , and thus , i.e., ( ) '( ), [0, )N t N t t≤ ∀ ∈ ∞ E[ ( )] E[ '( )]N t N t≤

1

1
Pr( )( ) E[ '( )] ( 1)t

Xm t N t αα≥ ⎢ ⎥≤ ≤ +⎣ ⎦ . Hence . QED ( )m t <∞

 

Example 5.1 Prove the renewal equation 
0

( ) ( ) ( ) ( )
t

m t F t m t x dF x= + −∫ . 

Proof: Using the conditional expectation argument, we have . We also 

have , where  is identically distributed as . Hence we write 
1( ) E[ ( )] E{E[ ( ) | ]}m t N t N t X= =

1{ ( ) | } 1 '( )N t X x N t x= = + − '( )N ⋅ ()N ⋅
  1E[ ( ) | ] 1 E[ '( )] 1 ( )N t X x N t x m t x= = + − = + − ,

and 

  
0 0

( ) [1 ( )] ( ) 0 ( ) ( ) ( ) ( ).
t t

t
m t m t x dF x dF x F t m t x dF x

∞
= + − + ⋅ = + −∫ ∫ ∫

 

Theorem 5.2 The renewal function  uniquely determines the distribution of the renewal process, i.e., 

.  

( )m t

F

Proof: Let’s take the Laplace tranform of  as follows: ( )m t

 1

1

10 0

1 0

1 1

-
1

( ) ( ) [ ( )]

( ) <by Fubini's theorem; non-negativity of ( )>

E[ ] {E[ ]} < 's are i.i.d.>

[ ( )] < ( ) E( )>

( )
<0

1 ( )

n

st st
nn

st
n nn

s S s X n
in n

n s X
n

m s e dm t e d F t

e dF t F t

e e X

F s F s e

F s
F s

∞ ∞ ∞− −
=

∞∞ −
=

∞ ∞− ⋅ − ⋅
= =

∞ ⋅
=

= =

=

= =

= ≡

=
−

∑∫ ∫
∑ ∫
∑ ∑
∑

�

� �

�
�

1-( ) E( ) 1>s XF s e ⋅< = <�

 

Hence we have ( )
( ) 1( ) m s

m sF s += �
�

� , i.e.,  uniquely determines . QED ( )m t F

 

Example 5.2 Suppose that , where . What is F  corresponding to ? ( )m t tλ= 0λ > ( )m t

We have 
0 0

( ) ( )st st
sm s e dm t e dt λλ

∞ ∞
− −= =∫ ∫� =  and thus /

1 /( ) s
ssF s λ λ

λλ ++= =� , which is the Laplace 

tranform of . Hence a Poisson process is the only renewal process that has a linear renewal 

function. 

exp( )λ
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)

)

Example 5.3 In defining a renewal process, we assume that . If  then 

after each renewal there is a positive probability 1  that there will be no further renewal. Argue 

that when  the total number of renewals, , is such that 1  has a geometric 

distribution with mean 

Pr( ) ( ) 1iX F<∞ = ∞ = ( ) 1F ∞ <

(F− ∞

( ) 1F ∞ < ( )N ∞ (N+ ∞
1

1 ( )F− ∞ . 

Proof: Clearly, we have 

  1 1

1 1

Pr[ ( ) ] Pr[ ,..., , ]

Pr( ) Pr( ) Pr( ) [ ( )] [1 ( )].
n n

n
n n

N n X X X

X X X F F
+

+

∞ = = <∞ <∞ =∞

= <∞ ⋅⋅⋅ <∞ ⋅ =∞ = ∞ ⋅ − ∞

This is the p.d.f. of a geometric distribution with mean 1
1 ( ) 1F− ∞ − , and thus 1  has a geometric 

distribution with mean 

(N+ ∞)
1

1 ( )F− ∞ . 

 

Proposition 5.3 lim  almost surely. ( )
t

N t
→∞

=∞

Proof: Let’s denote .  ( ) lim ( )
t

N N
→∞

∞ = t

i

  
( )

1 1

1

1

1

Pr[ ( ) ] Pr( ,..., ,  for some )

Pr

Pr( ) <by Boole's inequality>

0 0

ii

ii

ii

i

N X X X

X

X

−

∞

=
∞

=
∞

=

∞ <∞ = <∞ <∞ =∞

= =∞

≤ =∞

= =

∑
∑

∪

Hence . QED ( )N ∞ =∞

 

Comment 5.4 We may want to use the following argument to prove Proposition 5.3:  
Pr[ ( ) ] 1 lim Pr[ ( ) ] 1 Pr{lim[ ( ) ]} 1.

t t
N t N t N t

→∞ →∞
<∞ = ⇒ <∞ = ⇒ <∞ =  

The problem of the argument above is that we cannot switch li  with  like that.  m
t→∞

Pr

 

Theorem 5.3 ( ) 1lim N t
tt

µ
→∞

=  almost surely. 

Proof: We first translate ( )N t
t  into  and then use the relationship  to reach the goal. nS

( ) ( ) 1N t N t
S t S

+
≤ ≤

Note that  implies 
( ) ( ) 1N t N t

S t S
+

≤ ≤ ( ) ( ) 1

( ) ( ) ( )
N t N tS t

N t N t N t
+≤ ≤

S
. Although it is possible that  which would 

break the inequality above,  implies that we are okay here. If we take limits as t  on the 

inequality, we have 

( ) 0N t =

( )N ∞ =∞ → ∞
( )

( )lim N tS

N tt
µ

→∞
=  almost surely and ( ) 1 ( ) 1 ( ) 1

( ) ( ) 1 ( )lim limN t N tS S N t
N t N t N tt t

µ+ + +
+→∞ →∞

⎡ ⎤= ⎢ ⎥ =⎣ ⎦
 almost surely. Finally 

we have ( )lim t
N tt

µ
→∞

=  almost surely and thus ( ) 1lim N t
tt

µ
→∞

=  almost surely. QED 

 

Comment 5.5 The result in Theorem 5.3 implies that the average slope of the renewal process is 1
µ . Note 

that ( )lim N t
tt→∞

 is often called the “long-run rate” of the renewal process. 

 

Example 5.4 Consider an  queue with balking, so that if the server is busy when a customer 

arrives, the customer departs without receiving service, i.e., the customer is lost. What is the long-run 

fraction of customers that are lost? 

/ /1M G
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Let  be the arrival rate and λ 1
µ  be the mean service time. Assume that a customer arrives at time 0 to 

an empty system. Let  be the  service time, then ’s are i.i.d. with mean iY thi iY 1E( )iY µ= . Let  be the 

 idle time immediately after the service time, then ’s are i.i.d. ex  with mean 
iX

thi iX p( )λ 1
λ  (because of the 

memoryless property). Let  be the length of the  cycle covering both the service time and the idle 

time. Then ’s are i.i.d. with mean 
iZ thi

iZ 1E( ) E( ) E( )i i iZ Y X µ λ= + = + 1 . Let the long-run rate at which 

customers arrive be ( )lim N t
tt→∞

, where { (   is a Poisson process. Also denote the long-run rate at 

which customers are served as 

) : 0}N t t ≥
( )lim ZN t

tt→∞
, where  is the number of customers served at time t , i.e., 

the number of cycles . Since ’s are i.i.d.  and ’s are i.i.d. G , ’s are i.i.d. and  is a 

renewal process. 

( )ZN t

iZ iX exp( )λ iY iZ ( )ZN t

(a) The long-run rate that customers enter the bank is 

 ( ) 1 1 1
E( ) E( ) E( ) 1/ 1/lim .Z

i i i

N t
t Z X Yt

λµ
λ µµ λ ++ +→∞

= = = =  
(b) Fraction of customers enter the bank is 

 2( ) ( )/ 1/ E( )
( ) ( )/ 1/lim lim .Z Z iN t N t t Z

N t N t tt t

λ µ
λ µλ +→∞ →∞

= = =  
(c) Fraction of time the server is busy is 

 2

E( ) 1/
E( ) /( ) .i

i

Y
Z

µ λ µ
λµ λ µ λµ

+
+= =  

 

Example 5.5 A part in use is replaced by a new part either when it fails or when it reaches the age of T  

years. If the lifetimes of successive parts are independent with a common distribution F  having density 

, show that: (a) the long-run rate at which parts are replaced equals f { } 1

0
f( ) [1T ( )]

T
x x dx F T

−

+ −∫ ; (b) 

the long-run rate at which parts in use fail equals { } 1

0
( ) f( ) [1 ( )]

T
F T x x dx T F T

−

⋅ + −∫ . 

Proof: Let  be the life time of the  part and  be the actual time being used of the  part, then 

 if  and  otherwise. 
iT thi iX thi

i iX T= iT T≤ iX T=

(a) Let  be the number of replacement through time t  and the long run rate at which parts are 

replaced be . Then we have 

( )N t

NK ( ) 1
E( )lim

i

N t
t XN t

K
→∞

= = . Furthermore, we have 

  0 0

0 0 0 0

E( ) E[E( | )] E( | ) ( ) ( ) ( )

( ) ( ) ( ) ( ) [1 ( )],

T

i i i i i T
T T T

X X T X T u dF u udF u TdF u

udF u TdF u TdF u udF u T F T

+∞ ∞

∞

= = = = +

= + − = + −

∫ ∫
∫ ∫ ∫ ∫

∫

and thus  

 { } 1

0
f( ) [1 ( )] .

T

NK x x dx T F T
−

= + −∫  

 

(b) Let  be the time between the (  failure and the  failure. Then , where N  is 

the number of replacement between the (  failure and the  failure. Here  with 

probability  and N  doesn’t depend upon future events. So N  is a stopping time and 

we can use the Wald’s Equation to write 

jY 1)thj − thj
1

N

j jj
Y

=
=∑ iX

1)thj − thj GeometricN ∼

Pr( ) ( )iT T F T≤ =

{ }1
( ) 0

E( ) E( ) E( ) f( )x x [1 ( )]
T

F Tj jiY N X dx T F T= ⋅ = + −∫ . 
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Let  be the number of failed parts through time t . Since ’s are i.i.d., we know  is a renewal 

process. Hence we have 

( )FN t jY ( )FN t

 { } 1
( ) 1

E( ) 0
lim ( ) f( ) [1 ( )] ,F

j

TN t
t Yt

F T x x dx T F T
−

→∞
= = + −∫  

which is the long-run rate at which parts in use fail. 

 

Comment 5.6 Some limiting results are listed as follows: 

 ( )N t  ( )/N t t  ( )m t  ( )/m t t  

t <∞  ,  a.s.<∞  ,  a.s.<∞  <∞  <∞  
lim
t→∞

 ,  a.s.=∞  1 ,  a.s.µ=  ,  a.s.=∞  1 ,a.s.µ=  

 

Proof for :  lim ( )
t

m t
→∞

=∞

  1 1

1

lim ( ) lim ( ) lim ( ),

lim ( ) 1 .

n

k kk kt t t
n

kk t

m t F t F t n

F t n n

∞

= =→∞ →∞ →∞

= →∞

= ≥ ∀

= = ⋅ =

∑ ∑
∑

Since n  is arbitrary, we have . QED lim ( )
t

m t
→∞

=∞

 

What about ( )lim m t
tt→∞

? It seems tempting to do the following argument: 

 ( ) ( )

1( ) 1 1
E( ) E E[ ( )] E( ) ( ) ,

N t N t

i iN t i i
t S X t t X N t X m t µ

= =
⎡ ⎤≈ = ⇒ = ≈ = ⋅ = ⋅⎢ ⎥⎣ ⎦∑ ∑  

and thus we have ( ) 1m t
t µ≈ . However, the argument above was false in that  and ’s are not 

independent as required. When ’s are very small, we know  will be large and vice versa. Hence 

 and ’s are correlated with each other. Specifically, 

( )N t iX

iX ( )N t

( )N t iX 11
E E( )

N

ii
X N X

=
E( )⎡ ⎤ = ⋅⎢ ⎥⎣ ⎦∑  holds only if ’s 

are i.i.d., independent of N  and 

iX

1E X <∞  and . As a matter of fact, we are going to prove 

in Theorem 5.6 that 

E( )N <∞
( ) 1m t
tt

µ
→∞

=lim , using additional tools that we haven’t obtained yet. 

 

Example 5.6 Let   if I win the  toss of a fair coin and  otherwise. Clearly we have 1iX = thi 1iX = −
1
2Pr( 1) Pr( 1)iX X= = = = −i

) ( ) 0 E
N

ii
N X N p q X

=
⎡ ⎤⋅ = ⋅ − < = ⎢ ⎥⎣ ⎦∑

}

. Moreover, my wins after  plays are . Let  be the first time 

that I am ahead by $1. (If I win for the first game, then ; otherwise, I need win the next two games 

to get , etc.) By definition, we have , but . 

n
1

n

ii
X

=∑ N

1N =

3N =
1

1
N

ii
X

=
=∑ 1 1

E( ) E( ) E( ) 0 0 E
N

ii
N X N X

=
⎡ ⎤⋅ = ⋅ = ≠ ⎢ ⎥⎣ ⎦∑

 

As another example, suppose ,  and . We are having an unfair 

game here. Let N  be the last time that I break even, then  and , but 

. 

Pr( 1)iX q= − = Pr( 1)iX p= = p q<

1
0

N

ii
X

=
=∑ 0N ≥

1 1
E( ) E( ) E(

 

Definition 5.3 Let N  be a non-negative, integer-value r.v. Then  is a stopping time (Markov time, 

optional time) with respect to the sequence of r.v.s. { :  if  

where  is a deterministic function and I  is the indicator function. We say that  is 

N

0nX n ≥ 0( ) f ( ,..., ), 0,k kI N k X X k= = ∀ ≥

fk ( )I N k=
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}

N n A= ≥ ∈ =

}

1
k

}

,...n n+ +

.

. X

“determined by” . Furthermore, if  are independent, then the event { }  is 

independent of  
0,..., kX X 0,..., kX X N n=

1 2, ,..., 0,1,....n nX X n+ + ∀ =

 

Comment 5.7 Let A  be a given set and { :  be a stochastic process. Let 

. N  is a stopping time if  

0nX n ≥

inf{ 0 : } {the first time hit set }nX A

0 1 1

0 1

( ) [ , ,..., , ]

f ( , ,..., ), 0
k k

k k

I N k I X A X A X A X A

X X X k
−= = ∉ ∉ ∉ ∈

= ∀ ≥
 

i.e., the event {  doesn’t depend future events  N k=
1 2
, ,....

k k
X X+ +

Is  a stopping time? No. Because  and thus 

 does depend upon one of the future events, . 

'N N= − 0 11 1( ' ) ( 1) f ( , ,..., )kI N k I N k X X X+ += = = + =

( ' )I N k=
1k

X +

 

Definition 5.4 Let N  be a non-negative integer-valued r.v. Then  is a generalized stopping time 

(randomized stopping time) with respect to the sequence of r.v.s. { :  if the event { }  is 

independent of , for all  

N

0nX n ≥ N n=

1 2,X X 0,1,....n =

 

Theorem 5.4 Wald’s Equation Let  be i.i.d. r.v.s. and N  be a (generalized) stopping time with 

restpect to . Let  and . If either (1) ; or (2) 
1 2, ,..X X

1 2, ,..X X 0 0S =
1

n
n ii

S
=

=∑ 0,  almost surelyiX i≥ ∀

E[ ] ,iX i<∞ ∀  and , then we have E( . E( )N <∞ ) E( ) E( )iNS N X= ⋅

)iProof: Using the old trick, we have 
1 1

E E (
N

i ii i
X X I N

∞

= =
⎡ ⎤ ⎡ ⎤= ⋅ ≥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦∑ ∑ . Note that the event { }  

stands for “stop at time i  or later,” which is equivalent to “don’t stop at any time before .” 

N i≥

1i −

That is , which is a function of 

. Hence we have  independent of . 

1 1

11 1
( ) 1 ( 1) 1 ( ) 1 f ( ,..., )

i i

jj j
I N i I N i I N j X X

− −

= =
≥ = − ≤ − = − = = −∑ ∑ j

1 )1,..., iX X − (I N i≥ iX

 

Now we can write 

  

1 1

1

1

E ( ) E[ ( )] <by Fubini's theorem>

E[ ] E[ ( )] <by independence of  and ( )>

E[ ] Pr( )

E[ ] E( ).

i ii i

i ii

i i

i

X I N i X I N i

X I N i X I N i

X N i

X N

∞ ∞

= =
∞

=
∞

=

⎡ ⎤⋅ ≥ = ⋅ ≥⎢ ⎥⎣ ⎦
= ⋅ ≥ ≥

= ⋅ ≥

= ⋅

∑ ∑
∑

∑

Why can we use Fubini’s theorem above? We can certainly do so if the first condition satisfies, that is 

. Note that we can also do so if it holds that 0,  almost surelyiX i≥ ∀
1

E ( )ii
X I N i

∞

=
⎡ ⎤⋅ ≥ <∞⎢ ⎥⎣ ⎦∑ , which 

is implied by condition (2) in the theorem. How? We have 
1 1

E ( ) E
N

i ii i
X I N i X

∞

= =
⎡ ⎤⎡ ⎤⋅ ≥ = ⎢⎢ ⎥ ⎥⎣ ⎦ ⎣∑ ∑ ⎦  and since 

0,iX ≥ ∀i , we can use the condition (1) in the theorem and the result in the theorem to get 

1
E E( )

N

ii
X N

=
⎡ ⎤ = ⋅⎢ ⎥⎣ ⎦∑ E iX . Hence if we have condition (2), E(  and )N <∞ E iX <∞ , then we have 

1
E ( ) E( ) Ei ii

X I N i N X
∞

=
⎡ ⎤⋅ ≥ = ⋅ <∞⎢ ⎥⎣ ⎦∑ . QED 
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Comment 5.8 Now let’s consider the reason why we cannot use Wald’s Equation in the two cases of 

Example 5.6 above. For the first case, everything is fine except that E( . How? If we have 

, then we would be able to use Wald’s Equation and the argument used before to reach a 

contradition 1 . Therefore, . In the second case, we can actually show that . 

Why cannot we use the Wald’s Equation then? Because  is not a stopping time in this case in that it 

depends on the future ’s.  

)N =∞

E( )N <∞

0= E( )N =∞ E( )N <∞

N

iX

 

Example 5.7 Suppose a couple use a decision rule to decide when to stop having babies. Let  if the 

 child is a boy with probability 

1iX =
thi 1

2  and  if the  child is a girl with probability 1iX = − thi 1
2 . (Note that 

we choose –1 and 1 here to make sure the expected sum of children would reflect some interesting 

features, more girls or boys  or equal, which couldn’t be reflected if we were to use other numbers.) Let’s 

assume that  are i.i.d. and let  be the stopping time according to the decision rule. Apparently 

it is realistic to assume that  is a stopping time since future events won’t matter to the current 

stopping time.  

1 2, ,..X X . N

N

 

Some physical limitations would also suggest the natural assumption of . Define  

. Clearly  and if  holds indeed, then we can use Wald’s Equation to reach the 

conclusion: . 

E( )N <∞
1

n
n ii

S X
=

=∑
1E( ) 0X = E( )N <∞

1E( ) E( ) E( ) 0nS N X= ⋅ =

 

Let’s try one decision rule: “Have children until having the first boy.” Clearly the stopping time N  has a 

geometric distribution with mean 1 (It is possible that  so we use the version 0N = 1 p
pµ −=  in Comment 

1.5.(4).), and thus we have . 1E( ) E( ) E( ) 1 0 0nS N X= ⋅ = ⋅ =

 

Let’s try another rule: “Have children until the  boy.” We can also show that  and thus 

. Clearly, these two rules point to the same conclusion that we cannot change the sex mix in 

the long run. 

thk E( )N <∞

E( ) 0nS =

 

What about this one? “Have children until more boys than girls.” We will certainly have , but 

we actually have  so that we couldn’t use Wald’s Equation. Why? Suppose not, we have 

. Then we have 

E( ) 0nS >

E( )N =∞

E( )N <∞
1 1 1
2 2 21 1 1E( ) E[E( | )] E( | 1) E( | 1) 1 [E( ') E( ")] ,N N X N X N X N N= = = ⋅ + =− ⋅ = ⋅ + + ⋅ 1

2

N

 

where  stands for the stopping time from “more girls than boys” to “equal number of girls and boys,” 

and  stands for the stopping time from “equal number of girls and boys” to “more boys than girls.” 

Moreover, we know that  and  are identically distriuted with N , and thus 

, which implies 

'N

"N

'N "N

E( ') E( ") E( )N N= = 1
2E( ) E( )N = + N , a contradiction. Therefore, we must have 

.  E( )N =∞

 

Example 5.8 Gambler’s Ruin Suppose that person I and II are gambling. Person I starts with $1 and 

person II starts with $2. During each play, person I wins $1 from person II with probability , and loses p
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i
X

=
= +∑

2  C

2N

1N

$1 to person II with probability (1 . Assume that plays are independent and the game will continue 

until one of the players runs out of money, when is often called a ruin time. 

)p−

Let  if person I wins with probability p  and  if person II wins with probability (1 . 

Let  be the number of plays until the ruin time. We can easily show that N  is a stopping time. Let  

be the amount of fortune of person I at time n , so we have F . Can we use the Wald’s 

Equation here? We need to find out  and see if it is finite.  

1iX = 1iX = − )p−

N nF

1
1

n
n i

E( )N

 

Let  be the time to ruin when person I starts with $ learly, in this setup, we have 

 since person I starts with $1. Let’s consider the following dynamic scheme: 
iN , 1,i i = .

1E( ) E( )N N=
p p  

     0 1 

1-p 1-p 

2 3 1 1 
 

We can write 
  1 1 1 2E( ) E[E( | )] (1 ) 1 [1 E( )] 1 E( ),N N X p p N p= = − ⋅ + ⋅ + = + ⋅

and  
  2 2 1 1E( ) E[E( | )] 1 (1 ) [1 E( )] 1 (1 ) E( ).N N X p p N p= = ⋅ + − ⋅ + = + − ⋅

From the two equation systems, we can solve 1
1 (1 )1E( ) p

p pN +
− −= , which can be shown to be finite. 

Therefore, we have (2 1)(1 )1
1 (1 ) 1 (1 )1E( ) 1 E( ) E( ) 1 [ 1 (1 ) ( 1)] 1 .p pp

n p p p pF N X p p − ++
− − − −= + ⋅ = + ⋅ ⋅ + − ⋅ − = +  To give a 

specific example, let 2
3p , then we have . =

}

E( ) $1.71nF =

 

Definition 5.5 Suppose that { :  is a stochastic process with independent  that has 1nX n ≥ nX E  

and . Then { :  is a margingale with respect to { :  if for each n : 

(1) M X  is some deterministric function ; (2) 

iX <∞

} } ≥

X=

E( ) , 1iX iµ= ∀ ≥ 1nM n ≥ 1nX n ≥ 1

1f ( ,..., )n n n fn E nM <∞ ; (3) E . 1 1[ | ,..., ]n nnM X X M+ =

)X µ
=

= −∑
 

Define M  and we can verify that it is a martingale.  
1
(

n
n ii

(1) M  is clearly a deterministic function of X X .  n 1,..., n

(2) 
1 1 1 1

E E ( ) E E E
n n n n

n i i i ii i i i
M X X X Xµ µ µ µ

= = = =
⎡ ⎤= − ≤ − = − ≤ + <∞⎢ ⎥⎣ ⎦∑ ∑ ∑ ∑

n

. 

(3)  
1

1 1 1 1 11 1

1 1 1

E[ | ,..., ] E ( ) | ,..., E ( ) ( ) | ,...,

E[( ) | ,..., ] E( ) <by independence of >

.

n n
n ni in ni i

n n n in n

n

M X X X X X X X X X

M X X X M X X

M

µ µ µ

µ µ

+

+ += =

+ +

⎡ ⎤ ⎡ ⎤= − = − + −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
= + − = + −

=

∑ ∑
 

 

Example 5.9 If { :  is a martingale, show that for , . 1}nZ n ≥ 1 k n≤ < 1E[ | ,..., ]n k kZ Z Z Z=

Proof: Clearly, we have E  from the definition of martingale. Assume that 

, then we can write 
11[ | ,..., ]k k kZ Z Z Z+ =

i

=
1E[ | ,..., ] ,k i k kZ Z Z Z+ = ∀

  1 1 1 11 1 1 1E[ | ,..., ] E{E[ | ,..., ] | ,..., } E[ | ,..., ] . QEDk i k k i k k k k kZ Z Z Z Z Z Z Z Z Z Z Z+ + + + + += =
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}

}

Theorem 5.5 The Martingale (Optional) Stopping Theorem 

Let  be a martingale with respect to , and let  be a stopping time with 

restpect to { : . If E(  and there exists a K  such that 

{ : 1,...}nM n ≥ { : 1nX n ≥ N

1nX n ≥ )N <∞ <∞

1 1 2E | , ,...,n nnM M X X X+
⎡ ⎤− K⎢ ⎥⎣ ⎦ N≤≤  for n , then .  1E( ) E( )NM M=

 

Comment 5.9 We are not going to prove this theorem here since we don’t have enough tools yet. But we 

do want to demonstrate the condition for the case .  
1
( )

n
n ii

M X µ
=

= −∑
 1 1 2 1 1 2 1 1E | , ,..., E | , ,..., E E E .n n nn n n nM M X X X X X X X X X Kµ µ+ + + +

⎡ ⎤ ⎡ ⎤− = − = − ≤ + ≡⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ µ

n

X

 
The point here is that despite the fact that we can get , but  

may not hold all the time. This theorem essentially tells us that there is no free lunch. 
1E( ) E( ) 0,nM M= = ∀ 1E( ) E( ) 0NM M= =

 

Example 5.10 Consider a gambler who starts out with no money, and on each gamble is equally likely to 

win $1 or lose $1. Suppose that the gambler will quit playing at time T  when his winnings are either  

or , where . Let  be the gambler’s winnings on play number i . (a) Show that 

 is a martingale, where ; (b) Use the optional stopping theorem to show that 

 and hence that 

A

B− 0, 0A B> > iX

{ : 1}nS n ≥
1

n
n ii

S
=

=∑
E( ) 0TS = Pr( ) B

A BTS A += = ; (c) Show that { :  is a margtingale, where 

; (d) Use the optional stopping theorem to show that E(  and hence that 

. 

1nM n }

n

≥
2

n nM S= − ) 0TM =

E( )T AB=

 

We have  and E( ) 0iX = 2E( ) E( ) 1i iX X= = . 

(a) Clearly  is a deterministic function of only . nS 1,..., nX X

 
1 1 1

E( ) E E E .
n n n

n i i ii i i
S X X X n

= = =
⎡ ⎤ ⎡ ⎤= ≤ = = ∞<⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦∑ ∑ ∑  

  1 1 1 1 1E( | ,..., ) E( | ,..., ) E( ) .n n n nn n nS X X S X X X S X S+ += + = + = n+

Therefore,  is a martingale. nS

(b) T  is a stopping time because T  doesn’t depend upon the results of future games. 

 ( )1 1 1 1 1E | ,..., E | ,..., E 1n n nn n nS S X X X X X X+ +
⎡ ⎤ ⎡ ⎤− = = ∞⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ + = <  

Hence we can use the optional stopping theorem to write  
 1E( ) E( ) 0 Pr( ) [1 Pr( )] ( ) Pr( ) .B

A BT T T TS S S A A S A B S A += = = = ⋅ + − = ⋅ − ⇒ = =  
(c) Clearly  is a deterministic function of only . nM 1,..., nX X

 2 2 2 2
1 1 1

E( ) E E E 2
n n i

n n n i i ji i j
M S n S n X X X n n n

= = =
⎡ ⎤⎡ ⎤ ⎡ ⎤= − ≤ + = + ⋅ + = + <∞⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ ∑ ∑  

  2 2 2
1 1 1 1 1 1 1E( | ,..., ) E[ ( 1) | ,..., ] E[( ) (2 ) 1 | ,..., ]n n n nn n n nM X X S n X X S n S X X X X M+ + + += − + = − + + − =n n

Therefore,  is a martingale. nM

(d) Since 

 
{ }

{ }

2 2
1 1 1 1

1 1 1

E | ,..., E [ ( 1)] [ ] | ,...,

E (2 ) 1 | ,..., 2 0 0 1 1 0 ,

n n nn n

n nn n

M M X X S n S n X X

S X X X X

+ +

+ +

⎡ ⎤− = − + − −⎢ ⎥⎣ ⎦
= + − ≤ ⋅ ⋅ + − = <∞

n
 

we can use the optional stopping time theorem to get  
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 2 2 2 2 2
1 1E( ) E( ) E( 1) 0 or 0 E( ) E( ) E( ) E( ) .B A

A B A BT T TM M X T S T T S A B A+ += = − = = ⋅ − ⇒ = = ⋅ + ⋅ = B

} }

 
 

Example 5.11 Let { :  be a martingale with respect to { : . Suppose that { :  

is a real-valued sequence such that: (a)  , , for some deterministic function ; and 

(b) 

1nM n ≥ 1}nX n ≥ 1nW n ≥

1( ,..., )i i iW g X X= 1i ≥ ig

iW ≤ c 1)i−

}

 where . Set  and . Show that { :  is a 

martingale with respect to . 

0c > 1 0Z = 11
(

n
n iii

Z W M M−=
= −∑ 1}nZ n ≥

{ : 1nX n ≥
Proof: It is easy to verify that  is  indeed a determinstric function of .  nZ 1,..., nX X

 1 1 1 11 1

11 1

E[ ] E ( ) E E

E E

n n
n i ii i i ii i

n n

i ii i

Z W M M W M W M

c M c M

− − − −= =

−= =

⎡ ⎤ ⎡ ⎤ ⎡= − ≤ +⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣
⎡ ⎤ ⎡ ⎤≤ ⋅ + ⋅ <∞⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ ∑
∑ ∑

11

n

ii −=
⎤
⎥⎦

n n

n

m t

 

  1 1 1 1 1 1 11

1 1 1 1 1

E[ | ,..., ] E[ ( ) | ,..., ] E[ ( ) | ,..., ]

E[ ( ) | ,..., ] ( ,..., ) {E[ | ,..., ] }

n
n n n nin i i ni

n n n n n n n n nn n

Z X X W M M X X Z W M M X X

Z W M M X X Z g X X M X X M Z
+ − − +=

+ +

= − = + −

= + − = + ⋅ − =
∑

 

Lemma 5.1 Let { (  be a renewal process. Then ) : 0}N t t ≥ ( ) 1

( ) 1 1
E( ) E [ ( ) 1]

N t

iN t i
S X µ+

+ =
⎡ ⎤= = ⋅ +⎢ ⎥⎣ ⎦∑ .  

Proof: We have pondered before whether or not we can have 
1

E E( )
N

i ii
X N X

=
E( )⎡ ⎤ = ⋅⎢ ⎥⎣ ⎦∑  under very 

general conditions, and the answer is given by the Wald’s Equation. If we can prove that N  is a stopping 

time, then we can certainly apply the Wald’s Equation. Hence let’s consider the following question: Is 

 a function of only ? Given both  and , we cannot safely conclude whether or not 

 because it is possible that the third event will occur also ahead of t ; that is, only if the third 

event occurs after t , can we safely say . Equivalently, I N  is not a function of only 

, and thus  is not a stopping time.  

{ ( ) 2}I N t = 1 2,X X 1X 2X

( ) 2N t =
( ) 2N t = { ( ) 2}t =

)I N t X= =

+= ⇔ + + ≤ + +

t

m t

1 2,X X ( )N t

 

But we can say that  is a stopping time, why? Write down  or 

. If t  happens to be before the first two events, then clearly we have 

; if t  happens to be after the first two events, then clearly we have ; if time 

 sandwiched between the first two events, then we have . Therefore, 

 and  is a stopping time. (Remember that we have proved in Comment 

5.7 that  is not a stopping time even though N  is?) Formally, we have 

, and { (  

, i.e.,  depends on only  and thus 

 is a stopping time. Applying the Wald’s Equation, we have 

( ) 1N t + ?

2 1 2[ ( ) 1 2] f ( , )I N t X X+ = =
?

2 1 2[ ( ) 1] f ( , )I N t X X= =

[ ( ) 1] 0I N t = = [ ( ) 1] 0I N t = =
t [ ( ) 1] 1I N t = =

2 1 2[ ( ) 1] f ( ,X ( ) 1N t +

1N −

1 1 1{ ( ) } { ...  and ... }k kN t k X X t X X t> ) 1 } { ( ) 1}N t k N t k+ = ⇔ = −

1 11{ ...  and ... }k kX X t X X−⇔ + + ≤ + + > { ( ) 1 }I N t k+ = 1,..., kX X

( ) 1N t +
( ) 1

1( ) 1 1
E( ) E E( ) E[ ( ) 1] [ ( ) 1]

N t

iN t i
S X X N t µ+

+ =
⎡ ⎤= = ⋅ + = ⋅ +⎢ ⎥⎣ ⎦∑ . QED 

 

Theorem 5.6 The Elementary Renewal Theorem ( ) 1lim m t
tt

µ
→∞

= . 

Proof: Clearly we have , which implies  or [ ( , by Lemma 5.1. If 

, we can then write 
( ) 1N t

S
+

≥ t
( ) 1

E[ ]
N t

S t
+

≥ ) 1]m t tµ+ ⋅ ≥

µ <∞ ( ) 1 tm t µ+ ≥  and thus ( ) 1 1m t
t µ≥ − t . Hence ( ) 1lim inf m t

tt
µ

→∞
≥ . If , then the 

result holds trivially.  

µ =∞
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Let’s now define a truncated process as following: n nX X=  if  and nX M≤ nX M=  if , for 

some . Now it becomes clear that 
nX M>

0M >
( ) 1N t

S t
+

≤ +M  by our design. Thefore, we have 

( ) 1
E[ ]

N t
S t

+
≤ +M  or [ ( ) 1] Mm t t Mµ+ ⋅ ≤ + , where 1E( )

M
Xµ = . Clearly , we can divided both 

sides of the inequality by  and get 

M Mµ ≤

M
µ ( ) 1

M

t Mm t µ
++ ≤  and thus ( ) 1

M M

m t M
t µ µ ⋅≤ + − 1

t t , which implies 
( ) 1lim sup

M

m t
t

t
µ

→∞
≤ .  

 

We know that ,i iX X≥ ∀i , and thus ( ) ( )N t N t≤  so that ( ) ( )m t m t≤ . Hence 
( ) ( ) 1lim sup lim sup

M

m t m t
t t

t t
µ

→∞ →∞
≤ ≤ . Moreover, since  is arbitrary, so if we let M , we get M → ∞ 1

Mµ → 1
µ , by 

the Monotonic Convergence Theorem. Now we have ( ) ( )1 1lim sup lim supm t m t
t t

tt
µ µ

→∞→∞
≤ ≤ ≤ , which implies that 

( ) ( ) ( ) 1lim lim sup lim supm t m t m t
t t tt t t

µ
→∞ →∞ →∞

= = = . QED 

 

Comment 5.10 What are lim  and ? We know that li  may not exist, but both 

 and  will always exist. In particular, 

sup t
t

X
→∞

lim inf tt
X

→∞
m tt

X
→∞

lim sup t
t

X
→∞

lim inf tt
X

→∞
lim sup lim supt ktt k

X X
→∞→∞ ≥t

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 and 

. We always have lim  and if lim  then 

. For example, consider the case . We have  

and . But  doesn’t exist. 

lim inf lim inft kt t k t
X

→∞ →∞ ≥

⎡= ⎢⎣ ⎦
X ⎤

⎥

tX

inf lim supt tt t
X X

→∞ →∞
≤ inf lim supt tt t

X X
→∞ →∞

=

lim lim inf lim supt tt t t
X X

→∞ →∞ →∞
= = ( 1)ttX = − lim inf 1tt

X
→∞

= −

lim sup 1t
t

X
→∞

= lim tt
X

→∞

 

Theorem 5.7 Central Limit Theorem for Renewal Processes Let { (  be a renewal process. Let 

 and , assumed finite, represent the mean and variance of the inter-renewal times. Then 

) : 0}N t t ≥

µ 2σ
2

3

( ) / /21
2/

Pr
yN t t x

t
y e dxµ

πσ µ

− −

−∞

⎡ ⎤< →⎢ ⎥⎣ ⎦ ∫ → ∞ as t . Note that this implies that, for large enough t ,  is 

approximately normal with mean  and variance . 

(t)N

/t µ 2 3/tσ µ
 

Example 5.12 Suppose that ’s are uniformly distributed over (0 . Suppose we want to know 

. Clearly, 
iX ,1)

Pr[ (6) 10]N ≥ 1
2E( )iXµ = =  and 1

12Var( )iX = . Then by the Theorem 5.7, we have 
6 6

1/2 1/2

3 31 1 1 1
12 2 12 2

(6) 10

6 /( ) 6/( )
Pr[ (6) 10] Pr Pr[ () 1] 1 ( 1) 0.89.

N
N Z

− −

⋅ ⋅

⎡ ⎤≥ = ≥ = ⋅ ≥ − = −Φ − ≈⎢ ⎥⎢ ⎥⎣ ⎦
 

 

Definition 5.6 A non-negative r.v. X  is lattice if there is a constant  such that 

. The largest such d  is called the period of the lattice. If X  is lattice and F  is the 

distribution function of X , then we say that F  is lattice. 

0d >

0
Pr( ) 1

n
X nd

∞

=
= =∑

 

Comment 5.11 Note that a lattice is a special type of discrete r.v. but a discrete r.v. may not necessarily 

be a lattice. For example, let  with probability 1X = 1
2  and X  with probability c= 1

2 . Then we have  

as a discrete r.v. but not necessarily lattice. Specifically, if we use any rational number for c , then the 

discrete r.v. is a lattice. Otherwise, say, c , it is not a lattice. Proof of the latter case? Suppose that 

X

π=
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X  is lattice for c , then 1  for some rational number n  and  for some rational number 

 by the definition. But 

π= nd= mdπ =
m m

nπ =  is rational as the fraction of a rational number to another rational 

number? The presence of lattice cautiouses us when taking limits. Recall that the Elementary Renewal 

Theorem says that ( ) 1  a.s.m t
t µ→  as t . So we know if → ∞ ( ) t

µ=m t  then ( ) ( ) am t a m t µ+ − = . The 

generalized result in in Blackwell’s theorem below. 

 

Theorem 5.9 Blackwell’s Theorem  

(1) If F  is not lattice, then for all , 0a ≥ lim ( ) ( ) a

t
m t a m t µ

→∞
+ − = . 

(2) If F  is lattice with period d , then for , 1,2,...k = lim ( ) ( ) kd

n
m nd kd m nd µ

→∞
+ − = . For , this 

implies that 

1k =

lim E(number of renewals at time ) d

n
nd µ

→∞
=

t

).

. 

Proof: We sketch a proof for part (1) only. Assuming that limits exist. Let , 

then we have 

f( ) lim ( ) ( )
t

x m t x m
→∞

= + −

  f( ) lim{[ ( ) ( )] [ ( ) ( )]} f( ) f(
t

x a m t x a m t x m t x m t a x
→∞

+ = + + − + + + − = +

Then we have  for some c . We want to show that f( )x cx= 1c µ= . Define , then 

, which implies that 

( ) ( 1)tz m t m t= − −

lim f(1)tt
z

→∞
= = c 1

1
lim

n
n ttn

z c
=→∞
=∑ , that is, 

1lim [ (1) (0) (2) (1) ...+ + ( ) ( 1)]n
n

m m m m m n m n c
→∞

− + − − − = , i.e., ( ) (0)lim limm n m
n n

n n
c

→∞ →∞
− = . By the 

Elementary Theorem, we have ( ) 1lim m n
n

n
µ

→∞
=  and we also have (0)lim 0m

n
n→∞

= . Hence we have 1c µ= . QED 

 

Theorem 5.9 The Key Renewal Theorem 

If  is not lattice and  satisfies: (1) ; (2)  is nonincreasing; (3) , 

(any such  is also called “directly Riemann integrable.”) then 

F ( )h t ( ) 0, 0h t t≥ ∀ ≥ ( )h t
0

( )h t dt
∞

<∞∫
( )h t 1

0 0
lim ( ) ( ) ( )

t

t
h t x dm x h t dtµ

∞

→∞
− =∫ ∫ .  

 

Comment 5.12 We know that ( ) 1  a.s.m t
t µ→  as t . If → ∞ ( ) tm t µ= , then ( ) dtdm t µ=  and thus  

 1 1 1

0 0 0
lim ( ) ( ) lim ( ) lim ( ) ( ) .

t t t

t t t
h t x dm x h t x dx h u du h u duµ µ µ

∞

→∞ →∞ →∞
− = − = =∫ ∫ ∫ 0∫  

The Blackwell’s Theorem says that ( ) ( ) 1lim m t a m t
a

t
µ

+ −

→∞
= , which implies that ( ) ( ) 1 1

0 0
lim lim limm t a m t

a
a t a

µ µ
+ −

→ →∞ →

⎡ ⎤ = =⎢ ⎥⎣ ⎦ , 

i.e., ( ) 1lim dm t
dtt

µ
→∞

= , which is what we need to get the result similar to that in the case where ( ) tm t µ= . 

 

Definition 5.7 An equation of the form 
0

( ) ( ) ( ) ( )
t

g t h t g t x dF x= + −∫  is called a renewal type equation. In 

convolution the above states that g h . g F= + ⊗
 

Proposition 5.4 A renewal type equation has solution 
0

( ) ( ) ( ) ( )
t

g t h t h t x dm x= + −∫ . 

Proof: Before providing the formal proof, we provide the following intuitive reasoning: 

  
1

( ) nn
g h g F h h g F F h h F g F F h h F h h M

∞

=
= + ⊗ = + + ⊗ ⊗ = + ⊗ + ⊗ ⊗ = + ⊗ = + ⊗∑ .

�
We use the Laplace tranform to prove the result formally. If we take Laplace tranform on both sides of 

the renewal type equation, we have . (Note that Laplace transform is very effectively ( ) ( ) ( ) ( )g s h s g s F s= +�� �
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when calculating convolution.) Hence, we have ( )
1 ( )

( ) h s
F s

g s −=
�
�� , since all the Laplace transforms are numbers. 

Finally, we get  from the following decomposition,: 
0

( ) ( ) ( ) ( )
t

g t h t h t x dm x= + −∫
 ( ) ( )[1 ( ) ( )] ( )

1 ( ) 1 ( ) 1 ( )
( ) ( ) ( ) ( ) ( ) ( ).h s h s F s F s F s

F s F s F s
g s h s h s h s h s m s− +

− − −= = = + = +
� � � � �
� � �

� � � �� �  

 

Theorem 5.10 The Basic Renewal Theorem 

If  is not lattice,  satisfies (1) ; (2)  is nonincreasing; (3) , and 

 satisfies the renewal type equation, i.e., 

F ( )h t ( ) 0, 0h t t≥ ∀ ≥ ( )h t
0

( )h t dt
∞

<∞∫
( )g t

0
( ) ( ) ( ) ( )

t
g t h t g t x dF x= + −∫ , then 1

0
lim ( ) ( )
t

g t h t dtµ

∞

→∞
= ∫ . 

Proof: Applying the Proposition 5.4, we have 
0

( ) ( ) ( ) ( )
t

g t h t h t x dm x= + −∫ . Hence 

 
1

0 0

1

0

lim ( ) lim ( ) lim ( ) ( ) lim ( ) ( ) <by >

( ) . <by properties of ( )> QED

t

t t t t
g t h t h t x dm x h t h t dt

h t dt h t

µ

µ

∞

→∞ →∞ →∞ →∞
∞

= + − = +

=

∫ ∫
∫

Theorem 5.9
 

 

Theorem 5.11 An Alternating Renewal Process 

Consider a system that can be in one of two states called “on” or “off.” Initially it is on for a random 

time , followed by being off for a random time . It is then on for  and off for , etc. Suppose 

that ’s are i.i.d. r.v.s. with c.d.f. F  and the ’s are i.i.d. r.v.s. with c.d.f. G . Although  is allowed 

to be dependent on , the pairs {  are i.i.d. Let  be the probability that the system is on at 

time t . Then if  and  is not lattice, then 

1X 1Y 2X 2Y

iX iY iX

iY , }i iX Y ( )p t

1 1E( )X Y+ <∞ 1X Y+ 1
1

1 1

E(
E( )

)
E( )m ( ) X

X Yt
p t +→∞
=

t

1

1

li . 

Proof: Let , then  ( ) {system is on at time }Z t I t=

1 1 1 1( ) Pr[ ( ) 1] E[ ( )] E{E[ ( ) | ]} E{Pr[ ( ) 1 | ]}p t Z t Z t Z t X Y Z t X Y= = = = + = = + . 

We also have 

  1 1
1 1 1

( ) if 
Pr[ ( ) 1 | ]

Pr( | ) if 

p t x x t
Z t X Y x

X t X Y x x

⎧ − ≤⎪⎪⎪= + = = ⎨⎪ > + = >⎪⎪⎩
If we denote the c.d.f. of  as H , then   1X Y+

  1 1 1 1 10

0

( ) E{Pr[ ( ) 1 | ]} ( ) ( ) Pr( | ) ( ).

( ) ( ) ( ).

t

t
t

p t Z t X Y p t x dH x X t X Y x dH x

p t x dH x h t

∞
= = + = − + > + =

≡ − +

∫ ∫
∫

If  is non-lattice and if  satisfy the three conditions, then we can write 1X Y+ ( )h t

 1

0
lim ( ) ( ) , <By >
t

p t h t dtµ

∞

→∞
= ∫ Theorem 5.10  

where .  1 1E( ) E( )X Yµ = +

 

Since  when  implies 1 1 1Pr( | ) 0X t X Y x> + = = 0 x t< < 1 1 10
Pr( | ) ( ) 0

t
X t X Y x dH x> + = =∫ . We can 

manipulate the  in the following way: ( )h t

  1 1 1 1 1 10

1 1 1 1 1 1 10

( ) Pr( | ) ( ) Pr( | ) ( )

Pr( | ) ( ) E[Pr( | )] Pr( ).

t

t
h t X t X Y x dH x X t X Y x dH x

X t X Y x dH x X t X Y X t

∞

∞

= > + = + > + =

= > + = = > + =

∫ ∫
∫ >
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Therefore, the limiting probability of  is  ( )p t

 1

1 1 1 1

E( )1 1
E( ) E( ) E( ) E( )10 0

lim ( ) ( ) Pr( ) .X
X Y X Yt

p t h t dt X t dtµ

∞ ∞

+ +→∞
= = > =∫ ∫  

Now let’s verify if  satisfies the three conditions required. Clearly,  and 

 is nonincreasing. Furthermore, we have 

( )h t 1( ) Pr( ) 0,h t X t t= > ≥ ∀

1( ) Pr( )h t X t= > 10
( ) E( )h t dt X

∞
= <∞∫ . QED 

 

Example 5.13 Let’s go back to the example we mentioned when introducing the renewal theory, a part is 

replaced immediately when it fails. Let  be the age of the part at time t , which is also the time since 

the last renewal at time t . Let . Then we have 

( )A t

( ) E[ ( )]g t A t=

  1 0

0 0

( ) E{E[ ( ) | ]} ( ) ( ) ( )

( ) ( ) [1 ( )] ( ) ( ) (

t

t
t t

g t A t X g t x dF x tdF x

g t x dF x t F t g t x dF x h t

∞
= = − +

= − + ⋅ − ≡ − +

∫ ∫
∫ ∫ )

Assume that  is non-lattice and  satisfies the three properties, then we can apply the Theorem 

5.10 to write 
1X ( )h t

 
2 2
1 1

1 1 1

E( ) E( )1 1 1
2E( ) E( ) E( ) 2 E( )10 0

lim ( ) ( ) Pr( ) .X X
X X Xt

g t h t dt t X t dt
∞ ∞

→∞
= = ⋅ > = ⋅ =∫ ∫ 1X  

Note that the third equal sign uses the knowledge of Comment 1.6. 

It is easy to verify that  satisfies the three properties to be “directly Riemann integrable.” ( )h t

 

Proposition 5.5 Consider an  queue with arrival rate  and service rate . If  is the 

probability the server is idle at time t , then 

/ /1M G λ µ ( )p t

lim ( ) 1
t

p t λ
µ

→∞
= −  if λ . µ<

 

Definition 5.8 consider a renewal process. Let , then  is referred to as the age of the 

renewal process at time t . Let , then  is referred to as the excess (or residual) life of 

the renewal process at time t . Define  then . Note that  does not 

generally have the same distribution as . 

( )
( )

N t
A t t S= − ( )A t

( ) 1
( )

N t
Y t S t

+
= − ( )Y t

( ) 1
( )

N t
X t X

+
= ( ) ( ) ( )X t A t Y t= + ( )X t

1X

 

Proposition 5.6 If the interevent distribution of a renewal process is not lattice and with mean  

then 

µ <∞
1

0
lim Pr[ ( ) ] lim Pr[ ( ) ] [1 ( )]

x

t t
Y t x A t x F y dyµ

→∞ →∞
≤ = ≤ = −∫ . 

Proof: Let’s fix x  and we can prove this result using the notion of Alternating Renewal Process easily. 

Define Z t . Clearly, the  span for the system to be on is 

 and the span for the system being off could be zero instantaneously. Therefore, we have 

( ) {system is on at time } { ( ) }I t I A t x≡ ≡ ≤ thi

min( , )ix X

 1

1

E[min( , )]
E( )lim Pr[ ( ) ] lim Pr[ ( ) 1] . <By the >x X

Xt t
A t x Z t

→∞ →∞
≤ = = = Alternating Renewal Process  

Morover, we have 

  
1 1 1 10 0

1 10

0

E[min( , )] Pr[min( , ) ] Pr[min( , ) ] Pr[min( , ) ]

Pr[ ] 0 <note that 0  and  for the first integral>

[1 ( )] .

x

x
x

x

x X x X y dy x X y dy x X y dy

X y dy y x x X

F y dy

∞ ∞
= > = > +

= > + < < >

= −

∫ ∫ ∫
∫
∫

>
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Finally, we have 1

0
lim Pr[ ( ) ] [1 ( )]

x

t
A t x F y dyµ

→∞
≤ = −∫ .  

 

Since it is easy to recognize that { , we have  ( ) } { ( )Y t x A t x x≤ ⇔ + ≤ }

 1

0
lim Pr[ ( ) ] lim Pr[ ( ) ] lim Pr[ ( ) ] [1 ( )] . QED

x

t t t
Y t x A t x x A t x F y dyµ

→∞ →∞ →∞
≤ = + ≤ = ≤ = −∫  

 

Proposition 5.7 If the interevent distribution of a renewal process is not lattice and , then 2
1E( )X <∞

2
1E( )

2lim E[ ( )] lim E[ ( )] X

t t
Y t A t µ→∞ →∞

= = . 

Proof: Since , we have 
0

E[ ( )] Pr[ ( ) ]A t A t x dx
∞

= >∫

 

{ }
0 0

0

1

0 0

lim E[ ( )] lim Pr[ ( ) ] lim{Pr[ ( ) ] }

<assuming that we can do this swap, which is not true under general cases.>

{1 lim Pr[ ( ) ]}

{ [1 ( )] } <by the 

t t t

t
x

A t A t x dx A t x dx

A t x dx

F y dy dxµ
µ µ

∞ ∞

→∞ →∞ →∞

∞

→∞
∞

= > = >

= − ≤

= − −

∫ ∫

∫
∫ ∫ Propos

{ }

1 1

0 0 0

1

0

1

0 0

1

0

2 2 21 1 1
2 2 00 0

21
2

>

{ [1 ( )] [1 ( )] }

{ [1 ( )] }

[1 ( )] < ; 0 >

[1 ( )]

[1 ( )] [1 ( )] | [1 ( )]

0 0

x

x
y

F y dy F y dy dx

F y dy dx

F y dxdy x y

y F y dy

F y dy y F y y d F y

y

µ µ

µ

µ

µ

µ µ

µ

∞ ∞

∞ ∞

∞

∞

∞ ∞∞

= − − −

= −

= − ≤ ≤ <∞

= −

= ⋅ ⋅ − = ⋅ − − −

= ⋅ − +

∫ ∫ ∫
∫ ∫
∫ ∫
∫

∫ ∫

ition 5.6

Fubini Theorem

2

2

0

E( )
2 E( )

( ) <if  has finite variance, then lim [1 - ( )] 0>

. QED

m

X
X

dF y m m F m
∞

→∞

⎡ ⎤ =⎢ ⎥⎣ ⎦
=

∫

 

 

Proposition 5.8 If the interevent distribution of a renewal process is not lattice and  then µ <∞
1

0
lim Pr[ ( ) ] ( )

x

t
X t x ydF yµ

→∞
≤ = ∫  and 

2
1E( )lim E[ ( )] X

t
X t µ

→∞
= . 

Proof: Define  and note that we have zero length of on-off 

cycles. Then by the notion of Alternating Renewal Process, we have  

( ) {system is on at time } { ( ) }Z t I t X t x= ≤=

 1

0
lim Pr[ ( ) ] E(on time in a clycle)/E(length of a cycle) E{ ( )}/E( ) ( ),

x

t
X t x X I X x X ydF yµ

→∞
≤ = = ⋅ ≤ = ∫  

where the indicator function rips off the other half of the integral. By using the result from Proposition 

5.7, we have 
2
1E( )lim E[ ( )] lim E[ ( )] lim E[ ( )] X

t t t
X t A t Y t µ

→∞ →∞ →∞
= + = . Also note that 

2E( )
E( )E[ ( )] E( )X

XX t X→ ≥ , 

reflecting the essence of the “inspection paradox.” 

 

Example 5.14 Let  be the age at time t  for a renewal process where  with p.d.f. f .  is 

the length of the cycle in progress at time t . Compute 

( )A t iX F∼ ( )X t
( )
( )lim Pr[ ]A t

X tt
x

→∞
≤  for fixed . (0,1)x ∈

Define ( )
( )( ) Pr[ ]A t

X tg t x= ≤ . Then we can write 
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{ }( )
( ) 1

( ) ( )
( ) ( )1 1 10

( ) ( )
( ) ( ) 10

1 10

( ) E Pr |

Pr | f( ) Pr | Pr( )

Pr f( ) Pr ,

( ) f( ) Pr , < ( )  and (

A t
X t

t A t A t
X t X t

t A t u A t
X t u X t

t
t
x

g t x X

x X u u du x X t X t

x u du x X t

g t u u du X X t A t t X t

−
−

⎡ ⎤= ≤⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤= ≤ = ⋅ + ≤ > ⋅ >⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= ≤ ⋅ + ≤ >⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= − ⋅ + ≥ > =⎣ ⎦

∫
∫
∫ 1 1

0

)  if 

( ) f( ) ( ).
t

X X t

g t u u du h t

= >

≡ − ⋅ +∫

>

 

Since ’s are non-lattice, by the renewal theorem, we have iX
1

1
E( ) 0

lim ( ) ( )Xt
g t h t dt

∞

→∞
= ∫ . Moreover, we have 

 1 1 1( ) Pr , Pr .t t
x xh t X X t X⎡ ⎤ ⎡= ≥ > = ≥ ⎤⎣ ⎦ ⎣ ⎦  

Therefore, we have 

 1

1 1 1

E( )1 1 1
E( ) E( ) E( ) E( )1 10 0 0

lim ( ) ( ) Pr Pr .x Xt
xX X X Xt

g t h t dt X dt x X t dt x
∞ ∞ ∞ ⋅

→∞
⎡ ⎤ ⎡ ⎤= = ≥ = ⋅ ≥ = =

1⎣ ⎦ ⎣ ⎦∫ ∫ ∫  

That is, ( )
( )lim Pr A t

X tt
x x

→∞
⎡ ⎤≤ =⎢ ⎥⎣ ⎦  or ( )

( ) (0,1)A t
X t U⇒ . 

 

Definition 5.9 Let { :  be a sequence of non-negative independent r.v.s. Suppose  has c.d.f G  

and , has c.d.f. F . Then the counting process with these r.v.s. as interevent times, 

, is a delayed renewal process.  

1nX n ≥ }

2
1X

,iX i ≥

{ ( ) : 0}DN t t ≥

 

Proposition 5.9 Let { (  be a delayed renewal process, then we have the following results: ) : 0}DN t t ≥

(1) ( ) 1  a.s. as DN t
t tµ→ → ∞ ; (2) ( ) 1  a.s. as Dm t

t tµ→ → ∞ ; 

(3) if F  is not lattice, then ( ) ( )  a.s. as a
D Dm t a m t tµ+ − → → ∞ ; 

(4) if F  and G  are lattice with the same period d  then E(number of renewals at ) dnd µ→ ; 

 a.s. as n → ∞ ; 

(5) if F  is not lattice, , and h  satisfies the three properties of “directly Riemann integrable,” then µ <∞
1

0 0
lim (

t
h t ) ( ) ( )Dt

x dm x h t dtµ

∞

→∞
− =∫ ∫

}

. 

 

Definition 5.10 Let { :  be a sequence of non-negative i.i.d. r.v.s. forming the interevent times of 

a renewal process. Suppose that a reward  is earned at the time of the  renewal where  

is a sequence of i.i.d. r.v.s. We assume that (  are jointly i.i.d. but  can depend on . Then 

 is a renewal-reward process.  

1nX n ≥

nY thn { : 1}nY n ≥
, )i iX Y iY iX

{( , ) : 1}i iX Y i ≥

 

Theorem 5.12 Let {(  be a renewal-reward process with  and . Let 

 be the total reward earned up to time t . Then 

, ) : 1}i iX Y i ≥ 1E( )X <∞ 1E( )Y <∞
( )

1
( )

N t

ii
Y t Y

=
=∑ 1

1

E( )( )
E( )lim ,YY t

t Xt→∞
=  and 1

1

E( )E[ ( )]
E( )lim  a.s.YY t

t Xt→∞
= .  

Proof: 
( )

1( ) ( ) E( )1
( ) E( ) E( )lim lim E( )  a.s.

N t
ii

YY t N t Y
t tN t X Xt t

Y=

→∞ →∞

∑= ⋅ = ⋅ = Note that we used the Strong Law of Large 

Numbers to get the second equal sign above. Next, we have 
( ) ( ) 1

1 1 ( ) 1
E E EE[ ( )]lim lim lim .

N t N t
i ii i N t

Y Y YY t
t t tt t t

+

= = +

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
→∞ →∞ →∞ t

⎡ ⎤∑ ∑⎢ ⎥= = −⎢ ⎥⎢ ⎥⎣ ⎦
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We can show that ( ) 1E[ ]
lim 0N tY

tt

+

→∞
= , a proof of which was given in the textbook. We know  is a 

stopping time for { :  and  is a generalized stopping time for { :  and thus we can 

use the Wald’s Equation to write: 

( ) 1N t +

1}iX i ≥ ( ) 1N t + 1}iY i ≥

 
( ) 1

1
E ( ) 1 1lim lim E( ) E( ). <by the >

N t
ii

Y m t
t t i it t

Y Yµ

+

=
⎡ ⎤⎢ ⎥ +⎢ ⎥⎣ ⎦

→∞ →∞

∑
= ⋅ = ⋅ Elementary Renewal Theorem  

Note that the limits in this theorem don’t change if the reward is earned continuously, instead of at the 

end of each cycle.  

 

Example 5.15 Suppose that the cumulative demand for a product through time t , , gives a renewal 

process { (  with i.i.d. interdemand times  with 

( )D t

) : 0}D t t ≥ 1 2, ,...τ τ 1
1E( ) dτ = . Suppose that the lead times 

are 0, so that we reorder whenever inventory hits 0. Suppose further that we order the deterministic 

quantity Q  units. Each order carries a fixed cost $  and holding costs are  per unit per unit time. 

The objective is to minimize the long-run average cost.  

K $h

 

Let  be the cost occurred over the  cycle and  be the length of the  cycle. Denote the long-run 

average cost as AC . Then we have 

iY thi iX thi
( )

1

1

E( )
E( )lim

N t
ii

Y Y
t Xt

AC =

→∞

∑= = 1 . Clearly, 1 1
E( ) E E( )

Q Q
di ii

X Qτ τ
=

⎡ ⎤= = ⋅ =⎢ ⎥⎣ ⎦∑  

and  which implies that  1 1 2( 1) ... QY K ,h Q hτ τ τ= + + ⋅ − ⋅ + + ⋅h Q⋅ ⋅
( 1) (1 )

21E( ) ...h Q Q Qh Q h h
d d d dY K K− + ⋅⋅= + + + + = + ⋅ . 

Therefore, we have 221 1E( )/E( ) [ ( 1)]/( / ) ( 1h Kd
d QAC Y X K Q Q Q d Q= = + ⋅ ⋅ + = + ⋅ + )h . And finally 

* 2
2argmin{ ( 1)}Kd h Kd

Q h
Q

Q Q= + ⋅ + = .  

 

Definition 5.11 Consider a stochastic process  with state space {0  having the 

property that there exist time points at which the process (probabilistically) restarts itself. That is, 

suppose that with probability 1 there exists a time  such that the process beyong  is probabilitistic 

replica of the whole process starting at 0. Such a stochastic process is known as a regenerative process.  

{ ( ) : 0}X t t ≥ ,1,2,...}

1S 1S

 

Theorem 5.13 Let { (  be a regenerative process. Then  constitute the events of a 

renewal process. We say that a cycle is completed every time a renewal occurs. Let 

 denote the number of renewals by time t . If F , the distribution of a cycle, has a 

density over some interval, and if , then 

) : 0}X t t ≥ 1 2{ , ,...}S S

( ) max( : )nN t n S t= ≤

1E( )S <∞ E(amount of time in state  during a cycle)
E(time of a cycle)m Pr[ ( ) ] j

t
X t j

→∞
= =li . 

 

Proposition 5.10 For a regenerative process with , we have 1E( )S <∞

 [amount of time in state  during (0, )] E[amount of time in state  during (0, )] E[amount of time in state  during a cycle]
E(time of a cycle)lim lim .j t j t j

t tt t→∞ →∞
= =  

Proof: Think of a renewal-reward process. Let  be the reward in the  cycle, i.e., the amount of time 

spent in state . Let  be the length of the  cycle. Then the renewal reward theorem tells us that  
iY thi

j iX thi

 1 1

1 1

E( ) E( )( ) E[ ( )]
E( ) E( ) a.s. and  a.s. QEDY YY t Y t

t tX X→ →  
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i

..)

CHAPTER 6 MARKOV CHAINS 

 

Definition 6.1 A Markov process is a stochastic process { (  such that for all 

, , for all 

. Note the property above is called the Markov property and in effect says that given the 

present, the future is independent of the past. 

) : }X t t T∈

1 2 1... n nt t t t T+< < < < ∈ 1 1 1 1Pr[ ( ) | ( ) ,..., ( ) ] Pr[ ( ) | ( ) ]n n nn nX t x X t x X t x X t x X t x+ +≤ = = = ≤ =

1 2, ,..., ,nx x x x

 

Theorem 6.1 Every stochastic process with independent increments and  is a Markov process. (0) 0X =

 

Comment 6.1 Note that in the universe of stochastic process, we consider two subsets, one is Renewal 

Process and the other is Markov Chain. Any stochastic process with independent increments belongs to 

Markov Chain, and the set of Market Chain intersects with the set of Renewal Process at a special point, 

Poisson Process. Note that here we relax the assumption that the inter-renewal times  being i.i.d. and 

restrict them in a way that they satisfy the Markov property. 
iX

 

Definition 6.2 A discrete time Markov process { :  a (discrete time) Markov chain if the state 

space of all possible values of the process, , is discrete (i.e., finite or countably infinite). 

1nX n ≥  

S

 

Definition 6.3 If  does not depend on , we say that the Markov chain is time 

homogeneous. We will assume time homogeneity for all future chains. What this property says is that the 

transition probabilities won’t be updated (or learned) through time. 

1Pr( | )nnX j X+ = = n

 

Definition 6.4 Let . Then  is said to be the 1-step transition 

(or jump) probability from state i  to state . The ’s are often written as a single matrix P  where the 

 element of  is . P  is called the 1-step probability transition matrix. 

1Pr( | ), , 0,1,2,...nij np X j X i i j+= = = = ijp

j ijp

( , )thi j P ijp

 

Definition 6.5 The 1-step transition matrix is often drawn pictorially as a transition diagram. For 

example, we can draw the following transition diagram in the Gambler’s Ruin.  

 p p 

0 1 

1-p 1-p 

2 3 1 
 

1  

 

In this diagram the nodes represent the different states and the arcs are labeled with the transition 

probabilities between those states. 

 

Definition 6.6 Let  The initial probability vector is . Pr[ (0) ], 0,1,....ia X i i= = = 0 1 2( .a a a a=

 

Theorem 6.2 Together a  and P  completely determine the distribution of the Markov chain. 
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m

n P

)p

D

n a

j

n n

j

i

j

3

Proof:  

  

01 1

0 0 1 1

0 0 0 01 1 1 1 1 1 1 1

0 01 1 1 1 1 1

,

Pr[ , ,..., ] <where , 1,...,  are deterministric>

Pr[ | , ,..., ] Pr[ , ,..., ]

Pr[ | ] Pr[ , ,..., ]

nn

n n k

n n n n n n

n n n n n n

i i i i

X i X i X i i k n

X i X i X i X i X i X i X i

X i X i X i X i X i

p p
−

− − − −

− − − −

= = = ∀ =

= = = = = ⋅ = = =

= = = ⋅ = = =

= ⋅ ⋅ ⋅ ⋅  QEDa

 

Definition 6.7  is the probability that if a Markov chain 

starts in state i  then after n transitions it will be in state . This is called the n-step or -order 

transition probability. Just like the 1-step transitions, these n-step transitions are often written in matrix 

form as . 

( )
0Pr[ | ] Pr[ | ]n

n m nijp X j X i X j X i+= = = = = =

j thn

( )nP

 

Proposition 6.1 The n-step transition matrix may be found by multiplying  (the 1-step transition 

matrix) by itself  times, i.e., . Notice that this implies that for any m  and n , , 

which leads to the Chapman-Kolmogorov equation for Markov chains with state space , 

, for any non-negative integer m  and  and all state k . 

P

n ( )nP P= m n m nP P+ =

S
( ) ( ) (n m n m
ij ik kjk

p p+
∈

=∑ S
n ∈ S

Proof:  

  S

S

S

( )
0

0 0

0

( ) ( ) ( ) ( )

Pr[ | ]

Pr[ | , ] Pr[ | ]

Pr[ | ] Pr[ | ]

[ ] ,  i.e. , . QE

n m
n mij

n nn mk

n nn mk

m n n m n m n m
ijkj ikk

p X j X i

X j X i X k X k X i

X j X k X k X i

p p P P P P P

+
+

+∈

+∈

+
∈

= = =

= = = = ⋅ = =

= = = ⋅ = =

= ⋅ = =

∑
∑
∑

 

Proposition 6.2 The probability that the Markov chain is in state  after n  transitions is 

, and the vector of the state probabilities  may be found by . 

j
( ) ( )n
j kj kk

a p
∈

=∑ S
( )na ( )n na aP=

Proof: Let . We have  0Pr[ ]ja X= =
( ) ( ) ( )

0 0Pr[ ] Pr[ | ] Pr( ) [ ]n n n
n nj jkj kk k

a X j X j X k X k p a aP
∈ ∈

= = = = = ⋅ = = ⋅ =∑ ∑S S
, 

or , where  follows immediately from Proposition 6.1. ( ) ( )n na aP aP= = ( )nP P=

 

Definition 6.8 State  is said to be accessible from state i , written i , if  for some  

(where  for i  and  otherwise), i.e., if the chain is in state  then it is possible that at 

some later point it will end up in state . (For example, in the transition diagram for definition 6.5, we 

have 1 , but we don’t have .) 

j → ( ) 0n
ijp > 0n ≥

(0) 1ijp = j= 0= i

j

0,1 2,1 3,1 1→ → → → 3 1→

 

Comment 6.2 Why do we have  for i  and  otherwise? Note that  for  

and thus , which prompts us to write  and .  

(0) 1ijp = j= 0= ( ) 1n
ikk

p
∈

=∑ S
0n ≥

(0) 1
ikk

p
∈

=∑ S
(0) 1iip = (0) 0,

ik
p k= ∀ ≠

 

Definition 6.9 Two states i  and  are said to communicate, written , if they are accessible from 

each other. (For example, in the transition diagram for definition 6.5, we have 1 2 .) 

j i ↔

, 0 0, 3↔ ↔ ↔
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i j i j

m n
ik kim n p p↔ ⇔ ∃ ∋ > > 2 2( ) ( )

2 2, 0, 0m n
kj jk

k j m n p p↔ ⇔ ∃ ∋ > > . C

n

Theorem 6.3 Communication is an equivalence relation, i.e., 

(1) i  (reflective); (2)  implies  (symmetric); (3) i  and k  imply  

(transitive). 

↔ i ↔ j ↔ k↔ ↔ i j↔

Proof: (1) Take , we have  by definition, and thus i i . 0n = (0) 1iip = ↔

(2) This property is obvious and we are not going to prove it here. 

(3) i k  and learly, we have 

. Similarly, we have  and thus we have i j . 

1 1( ) ( )
1 1, 0, 0

1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) 0m m m m m m
ij il lj ik kjl

p p p p p+
∈

= ≥ >∑ S
1 2( ) 0n n

jip + > ↔

 

Definition 6.10 We may partition the state space into mutually exclusive and exhaustive classes such that 

two states communicate if and only if they are in the same class. We do this by starting with any state i  

and forming the class  of all states that communicate with i . Then we repeat for any state not in C , 

and so on. 
iC i

 

Definition 6.11 A Markov chain is said to be irreducible if all states communicate (i.e., there is only one 

equivalence class); otherwise, it is reducible. So a Markov chain is irreducible if, for all states i  and , 

there is an  such that . 

j

0n ≥ 0Pr[ | ] 0nX j X i= = >

 

Example 6.1 In all the transition diagrams below, we assume 0 1 . p< <
p p p (a)  

0 1 

1-p 1-p 

… 

1-p 

n-1 n 1 
 

1 
 

 

Since , the Markov chain above is reducible. 1 2 3{0}, {1,2,..., 1}, { }C C n C= = − =

p 1  

0 

1-p 1-p 

… 1 
(b)  

 

 

Since , the Markov chain above is irreducible. 1 {0,1,....}C =
1-p 1-p 1-p 

0 
p 

1 … 
p 

 

(c) 

 

Since , the Markov chain above is reducible. 1 2{0}, {1},...C C= =

 

Definition 6.12 The period of a state , written , is the greatest common divisor of all  such 

that . If  then state  is said to be aperiodic. If , then we define 

. 

j ( )d j 0n >
( ) 0n
jjp > ( ) 1d j = j ( ) 0, 0n

jjp n= ∀ >

( ) 0d j ≡
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j

0

n . 

=

Example 6.2 1/2 1/2 

0 1/2 

1/2 1 

2 1 
(a)  

 

 

Since , we have  and thus the Markov chain above is aperiodic. ( )
00 0,  if {1,2, 3,...}np n> ∈ (0) 1d =

1/2 1  

0 
1/2 

1 

2 1 
(b)  

 

 

Since , we have  and thus the Markov chain above is aperiodic. Note that 

although , we still have . 

( )
00 0,  if {2, 3,...}np n> ∈ (0) 1d =

(1)
00 0p = (0) 1d =

1/2 1  

0 

1/2 1 

2 1 
(c) 

 

 

Since , we have  and thus the Markov chain above is periodic. ( )
00 0,  if {2, 4,6,...}np n> ∈ (0) 2d =

 

Definition 6.13 A property of a state is called a class property if either all members of any class share the 

property or none of the members share the property. 

 

Proposition 6.3 If i , then  (i.e., periodicity is a class property). ↔ ( ) ( )d i d j=

 

Definition 6.14 Define the first passage probabilities as , 

 So f  is the probability that the Markov chain is in state  for the first time after n  

transitions, having started in state . Define  for . 

0f Pr[ , , 1,2,..., 1 | ]n
nij kX j X j k n X i= = ≠ = − =

1,2,....n = n
ij j

i 0fij ≡ i j≠

 

Proposition 6.4 We have  as well as ( )f , , ,  and 0n n
ij ijp i j n≤ ∀ ≥ ( ) ( )

1
f , , ,  and 1

nn k n k
ij ij jjk

p p i j−
=

= ∀ ≥∑
 

Definition 6.15 Let , then  is the probability of ever going from i  to . 
1

f f k
ij ijk

∞

=
=∑ fij j

 

Definition 6.16 State  is recurrent if  and is transient otherwise. j f 1jj =

 

Proposition 6.5 State  is recurrent if and only if . j ( )
1

n
jjn

p
∞

=
=∞∑

Proof: Let the number of visits to state  throughout the time. Then we have 
1

( )
kk

N I X j
∞

=
= =∑ j

  
0 01

01

( )
01 1

E( | ) E ( ) |

E[ ( ) | ] <by Fubini's Theorem;non-negativity>

Pr[ | ]

kk

kk

k
jjkk k

N X j I X j X j

I X j X j

X j X j p

∞

=
∞

=
∞ ∞

= =

⎡ ⎤= = = =⎢ ⎥⎣ ⎦
= = =

= = = =

∑
∑
∑ ∑
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To prove ⇒ , we have the following reasoning: 

  
( )

0 0 1

recurrent f 1 starting from state , always come back to state 

( | ) , a.s. E( | )= .
jj

k
jjk

j j

N X j N X j p
∞

=

⇔ = ⇔

⇔ = =∞ ⇒ = ∞ ⇔ =∞∑
To prove ⇐ , we prove “ ”. Clearly, we can write ( )

1
transient n

jjn
p

∞

=
⇒ <∞∑

  jjtransient f 1 Pr[return to | start in ] f 1.jjj j⇔ < ⇔ = <

That is, the number of visits N  to state , given starting in state , is geomet . Hence j j ric(1 f )jj−
1

1 f0E( | )
jj

N X j −= = <∞ . QED 

 

Example 6.3 One-dimension random walk ( 0 1 ) p< <
p 

1-p 

1 … 

p p 

0 -1 

p 

1-p 1-p 

… 

 

 

 
1-p  

It is quite intuitive to think that when 1
2p < , then the chain will move towards the state −∞  and thus 

each of the state in the chain is transient; when 1
2p > , then the chain will move towards the state +  

and thus each of the state in the chain is again transient; when 

∞
1
2p = , then every state is recurrent. We 

can prove this intuition as follows. 

 

Let’s at first consider the state 0, without loss of generality. Clearly, we have  since we cannot 

get back to the original state 0 in an odd number of steps. What is  then? It is obvious that we 

should move n  steps to the right of the state 0 and n  steps to the left of the state 0, with the particular 

order and combination of the directions being arbitrary. Equivalently, we can try to fill 2  slots with n  

R’s and  L’s. There are (  combinations of directions R and L, and each combination of directions 

has probability of . Therefore, .  

(2 1)
00 0np + =

(2 )
00

np

n

n )2n
n

(1 )np p− n )n n n n
np p p= −( )(2 ) 2

00 (1

 

To determine whether state 0 is transient, we need to verify whether  is finite. It is easy to get ( )
001
k

k
p

∞

=∑
2

(2 )!( ) (2 )
00 00 ( !)1 1 1

[ (1 )]nk n
nk n n

p p p
∞ ∞ ∞

= = =
= = −∑ ∑ ∑ np . In order to calculate this sum, we refer to one variation of 

the Stirling’s Formula: 1
2

!

2
1 as 

n n

n

n e
n

π+ −⋅ ⋅
→ → ∞ . Hence, we have 

 
1 1
2 2

2

2 2 2
(2 )!

2 1 2( !)1 1 1 1

(2 ) 2 (2 ) [4 (1 )]
[ (1 )] [ (1 )] [ (1 )] .

2 2

n n n
n n n n

n nnn n n n

n e n p p
p p p p p p

n e nn
π

π ππ

+ − +
∞ ∞ ∞ ∞

+ −= = = =

⋅ ⋅ −− ≈ − = − =
⋅ ⋅∑ ∑ ∑ ∑

n

 

Because 4 (  when 1 ) 1p p− < 1
2p ≠  and  when 4 (1 ) 1p p− = 1

2p = , we know that  

 
1
2

11
2

if i.e., state 0 is recurrent;[4 (1 )]
< if i.e., state 0 is transient.

n

n

pp p
pnπ

∞

=

⎧=∞ =⎪− ⎪⎪⎨⎪ ∞ ≠⎪⎪⎩
∑  

To see why 
1

[4 (1 )]n
n

p p
nπ

∞

=

− <∞∑  if 1
2p ≠ , we can write 

 
1 1

[4 (1 )] [4 (1 )] 4 (1 )
.

[1 4 (1 )]

n n

n n

p p p p p p
n pπ π π

∞ ∞

= =

− − −< = ∞
− −∑ ∑ p

<  

The argument can be easily applied to any other states and get the same conclusion. QED 
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Comment 6.3 We can extend the result above to random walks of higher dimensions. For example, for the 

case of two-dimensional random walk, we find that if the probabilities of going up or down or left or right 

are equal to 1
4 , then each of the state is recurrent; otherwise, each of the state is transient. However, for 

the case of three-dimensional or higher-dimensional random walk, no matter how we tweak the 

probabilities, each state is transient.  

 

Proposition 6.6 If i  is recurrent and i , then  is recurrent (i.e., recurrence is a class property). j

j

j

j

↔ j

Proof: We can use the argument of geometric trial to prove it. The proof is skipped here. 

 

Proposition 6.7 If i  and i  is recurrent then f 1 . ↔ ij =

Intuition: By Proposition 6.6, we know that i  and  are both recurrent, so that the number of 

visits to state , started in state , must be infinite, i.e., f 1 . 

↔ ,i j

j i ij =

 

Proposition 6.8 If state  is transient then  for all initial states . j ( )
1

n
ijn

p
∞

=
<∞∑ i

Intuition: This result is a bit stronger than part (2) of the proof for Proposition 6.5. 

 

Corollary 6.1 If state  is transient then  for all initial states i .  j ( )lim 0n
ijn

p
→∞

=

Intution: This corollary is a direct implication of Proposition 6.8 because of the following theorem: If 

 then . That is,  is a necessary (but not sufficient) condition for 

the convergence of an infinite series. 
1 nn
a s

∞

=
→ <∞∑ lim 0nn

a
→∞

= lim 0nn
a

→∞
=

 

Definition 6.17 Let  be the expected number of transitions needed to return to state  from state , 

so that  if state  is transient and  if state  is recurrent. Note that  is also 

referred to as the mean recurrence time for state . 

jjµ j j

jjµ =∞ j
1

fn
jj jjn

nµ ∞

=
=∑ j jjµ

j

 

Theorem 6.4 Let  be the number of transitions into state  by time t . If i  then ( )jN t j ↔
( ) 1

0Pr lim | 1j

jj

N t
tt

X iµ
→∞

⎡ ⎤= =⎢ ⎥⎣ ⎦
=

=

.  

Intuition: Clearly  and each time when state  is reached, we consider a renewal 

occurs. So we can use the results from the renewal theory to reach the conclusion that 
1

( ) ( )
t

j kk
N t I X j

=
=∑ j

( ) 1  a.s.j

jj

N t
t µ→  

 

Theorem 6.5 If  then i ↔ j ( )1 1
1

lim
jj

n k
n ijkn
p µ=→∞
=∑ .  

Intuition: This result is very similar to ( ) 1lim m t
tt

µ
→∞

→  in the renewal theory. 

 

Theorem 6.6 We have ( )[ ( )]lim
jj

d jnd j
jjn

p µ
→∞

=  for all cases. In particular, if i  and state  is aperiodic, then j↔ j
( ) 1lim

jj

n
ijn

p µ
→∞

= .  
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Intuition: (for the aperiodic case only) Let’s define that a renewal occurs whenever the state  is visited. 

Note that in Markov chain, we don’t have the case where two renewals occurring in the same time. 

Instead, the state  is either visisted or not. Hence, we can write 

j

j

  ( ) Pr(renewal at time |renew at time 0) E(# of renewals through time |renew at time 0).n
jjp n n= =

Furthermore, when state  is aperiodic, the Markov chain (in discrete time) is clearly a lattice with 

, so we can use the result (4) in Proposition 5.9 to get the conclusion 

j

1d = 1lim
jj

n
jjn

p µ
→∞

→ . 

For the second part of the theorem, we consider the part of the chain jumping from state i  to state  for 

the first time a delay, after which we have a standard renewal as defined above. So we can use the results 

for delayed renewal to get the conclusion in the second part. 

j

 

Example 6.4 Let the transition matrix be ( 1 1
2 2

0 1 P = ) . We can draw the transition diagram as follows. 

 1 

2 1 
 

1/2 
 

1/2  

It is easy to see that there is only one communiting class, {1 , and thus the Markov chain above is 

irreducible. Since  for , we have  and thus . The Markov chain 

is aperiodic. Let’s next find out the mean recurrence time . By definition, we have 

,2}
( )
22 0np > {1,2,...}n = (2) 1d = (2) (1) 1d d= =

11µ

 
21 1 1 1 1 1 1 1

2 2 2 2 2 2 2 211 11

21 1 1 1
2 2 2 211 11

2 1 3 1 4 1 ...,  or 2 2 3 4 ( ) ..., or 

2 2 ( ) ... 2 /(1 ) 3.

µ µ

µ µ

= ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + = + ⋅ + ⋅ +

− = + + + = + − =
 

By Theorem 6.6, we have 
11

( ) 1
311

np µ→ = 1  and 
11

( ) 1
321

np µ→ = 1 . Hence ( ) 2
312

np →  and ( ) 2
322

np → . That is, 
1 2
3 3
1 2
3 3
 .nP ⎡ ⎤→ ⎢ ⎥⎣ ⎦

 If we were to use first-step analysis mentioned in example 6.9, we can write  

 
1 1
2 211 21 21 21 21 11

1 1
2 222 12 12 12 22

(1 ) 1 and (1 ) 1 2 and 3;

1 (1 )  and 1 1 1 1 and .

µ µ µ µ µ µ

µ µ µ µ µ

= + ⋅ = + ⋅ + ⋅ ⇔ = =

= ⋅ + + ⋅ = ⋅ = ⇔ = = 3
2

= = =

=

)+ = i= =

 

 

Example 6.5 Let the transition matrix be P . The transition diagram is drawn as follows. ( )0 1
01  =

1 
 

1 

2 1  

 

There is only one communicating class, {1 . Since  for n , we have d d  

and thus the Markov chain above is periodic. Since after any even number of steps, the chain returns 

back to the original state, we have P . Similarly, after any odd number of steps, the chain visits 

the other state, not the original state, we have P . Hence, we can write p  and 

the Theorem 6.6 implies that 

,2} ( )
11 0np > {2,4,...} (1) (2) 2

( )2 1 0
0 1 

n

(2 1 0 1
01  n (2 ) 1, 1,2n

ii

( )(2 ) 2lim 1
ii ii

d in
iin

p µ µ
→∞

= = = , i.e., . Note that because of the 

alternating nature of the chain,  doesn’t exists, and thus we need the period d i  sits on the top 

as steps in the first part of the Theorem 6.6.  

2, 1,2ii iµ = =
( )lim n
iin

p
→∞

( )
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Definition 6.18 Define the limiting probability of state  as j ( )[ ( )]lim
jj

d jnd j
j jjn

p µπ
→∞

≡ = . [Note that in Example 

6.4, we have 1
31π =  and 2

32π =  and in Example 6.5, we have  and . Why in the second 

case we don’t have  as we do in the first example? It is because the periodicity of the second 

Markov chain messes up the limiting probability.] 

1 1π = 2 1π =

1 2 1π π+ =

 

Definition 6.19 A recurrent state  is said to be positive recurrent if  and null recurrent if .  j 0jπ > 0jπ =

 

Example 6.6 In Example 6.3, we have 2
(2 )! [4 (1 )](2 )
( !)

[ (1 )]
nn pn n

njj n
p p p π

−= − ≈ p . Since 4 ( , we have 1 ) [0,1]p p− ∈
[4 (1 )]lim 0

np p
nn π
−

→∞
= , i.e.,  and . So when 0jπ = jjµ =∞ 1

2p = , state  is called null recurrent.  j

 

Comment 6.4 For an aperiodic Markov chain, we have the following table of results. 

 

State i  State  j ( )lim n
ijn

p
→∞

 

Transient Transient 0 

Recurrent Transient 0 

Transient Recurrent /ij jjf µ  

Recurrent Recurrent 1  if ;  and 0 if i .
jj

i j jµ /↔ ↔  

 

When determining the results above, keep in mind the following special case, where state 0 is transient 

and state 1 and 2 are recurrent. Note that a null recurrent state can never happen in a finite state space. 

 

1/2 

1 2 

1 1 

1/2 
0 

 

 

 

 

 

 

Proposition 6.9 Positive (or null) recurrence is a class property. 

 

Definition 6.20 A positive recurrent, aperiodic state is called ergodic.  

 

Definition 6.21 An irreducible aperiodic positive recurrent Markov chain is an ergodic Markov chain. 

 

Definition 6.22 A probability distribution  is said to be a stationary distribution if: 0 1
ˆ ˆ ˆ( ...)π π π=

(1) for all state , ; (2) ∑ . That is, π  satisfies  and (2). j ∈ S ˆ ˆj ii
pπ π

∈
=∑ S ij S

ˆ 1ii
π

∈
= ˆ ˆ ˆPπ π=
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Example 6.7 In our previous example with ( 1 1
2 2

0 1 P = ) , we have 1 2
3 31 2, , (1) (2)d dπ π= = = = 1 , and thus 

the chain is ergodic. We could have solve a system of two equations satisfying the properties in Definition 

6.22 for  and . That is, from , we have 1̂π 2̂π ˆ ˆPπ π= 1
21 2

ˆ ˆπ π= ⋅  and 1
22 1 2

ˆ ˆ ˆπ π π= + ⋅ ; from , 

we have . It is no surprise to find some redundant equations from these two requirements, and 

we can solve for 

1,2
ˆ 1ii
π

=
=∑

1 2
ˆ ˆ 1π π+ =

1
31 2

ˆ ˆ,π π= = 2
3 . In our previous example with ,  implies that  

and . We can thus solve for 

( )0 1
01  P = ˆ ˆPπ π= 1 2

ˆ ˆπ π=

1 2
ˆ ˆ 1π π+ = 1

21 2
ˆ ˆπ π= = . 

In the Gambler’s ruin, we have the following transition matix 

 

1 0 0 0

1 0
.

0 1 0

0 0 0 1

p p
P

p p

0

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 

From , we have , , , and 

. From , we have . That is, we 

have infinite amount of stationary distributions in this Gambler’s ruin. 

ˆ ˆPπ π= 1 1 2 2
ˆ ˆ ˆ ˆ(1 ) 0pπ π π π= + − ⇒ = 2 3 3

ˆ ˆ ˆ(1 ) 0pπ π π= − ⇒ = 3
ˆ pπ = 2̂π

14 3 4 3
ˆ ˆ ˆ ˆ 0pπ π π π= + ⇒ = ˆ 1ii

π
∈

=∑ S 1 2 3 4 1 4
ˆ ˆ ˆ ˆ ˆ ˆ1π π π π π π+ + + = ⇒ + =

 

Theorem 6.7 If a Markov chain is ergodic then the limiting probabilities  form a stationary 

distribution and there are no other stationary distributions. 

0 1( ...)π π

 

Example 6.8 Let the transition matrix be  

 

1 1 1
2 4 4

1 1 1
4 2 4

1 1 1
4 4 2

.P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Clearly, there is one communicating class containing all three states and the Markov chain is irreducible. 

Since the chain can reach state 1 starting from state 1 with one step, we have  for  

and thus . The Markov chain is aperiodic and all states are recurrent. Since we 

cannot have  for recurrent states , when having only finite state spaces, so all states are 

positive recurrent. Therefore, we have an ergodic Markov chain and by Theorem 6.7, we can get the 

limiting probabilities from sationary ones. That is, we can solve  and  for the 

limiting probabilities.  

( )
11 0np > {1,2, 3,...}n =

(1) (2) (3) 1d d d= = =

,jjµ =∞ 1,2,3j =

ˆ ˆPπ π= 1 2 3
ˆ ˆ ˆ 1π π π+ + =

 

Note that all rows and colums of matrix  add up to 1 and this type of stochastic matrix is called 

“Doubly Stochastic Matrix.” One of special properties of the doubly stochastic matrix is that the 

stationary probabilities are equal across all states for an ergodic Markov chain. That is, we have 

P

1
31 2 3

ˆ ˆ ˆπ π π= = = . By Theorem 6.7, we have  and thus ˆ , 1,2,j j jπ π= = 3 1
3 , , 1,2, 3n

ijP i j= ∀ = . 

 

Theorem 6.8 If an irreducible aperiodic Markov chain is not positive recurrent, then no stationary 

distribution exists. (In this case, we have .) 0,n
jjp j→ ∀ ∈ S
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}

= A

0

,p

)

Example 6.9 Let  be an irreducible Markov chain on a finite state space . Suppose 

that we want to compute , where  is the first hitting time 

to the set , and . We can apply first-step analysis to solve this problem. First-step analysis is 

another name for conditioning on the first state one enters upon leaving x . So we can write 

{ : 0nX X n= ≥ S

0( ) E[ | ]
A

u x T X x= inf{ 0 : }nA
T n X= ≥ ∈

A cx A∈

  0 01 1( ) E( | ) E( | , ) Pr( | )

1 [1 ( )] 1 ( )c c

A Ay

xy xy xy xyy A y A y y A

u x T X x T X y X x X y X x

p u y p p u y
∈

∈ ∈ ∈ ∈

= = = = = ⋅ = =

= ⋅ + + ⋅ = ⋅ + ⋅

∑
∑ ∑ ∑ ∑

S

S

which is the following, in matrix notation, 
  .= +u i Bu
In the equation above,  is the portion of the transition matrix pertaining to states ,  is the 

vector of mean first-hitting times for all states , and  is a vector of ones. Thus, we can computer 

by solving this linear system of equations. And this technique works for a wide variety of performance 

measures. Note that the Example 5.8 is one application of this tool. In particular, we have , 

,  and . 

B cj A∈ u
cj A∈ i

u
{1,2}A =

{0,3}cA = ( 0
01
p

p−=B 1

2

E( )
E( )

N
N

⎡ ⎤= ⎢ ⎥⎣ ⎦
u

 

Example 6.10 Suppose that f :  is a function returning the “cost” associated with occupying states 

in the Markov chain. For , define that 

→S R
cx A∈ 1

00
( ) E f( ) |AT

kk
v x X X x

−

=
⎡ ⎤= =⎢ ⎥⎣ ⎦∑ . How can we find out ? 

Clearly, we can write  

( )v x

  1 1

0 00 1
( ) E f( ) | f( ) E f( ) | .A AT T

k kk k
v x X X x x X X x

− −

= =
⎡ ⎤ ⎡= = = +⎢ ⎥ ⎢⎣ ⎦ ⎣∑ ∑ ⎤= ⎥⎦

.
A

1

]

Note that if the chain reaches the set  in the first step, then the second term above contains an empty 

summation and thus zero expected cost. Using the first-step analysis again, we have  

A

  1

01
E f( ) | 0 ( )A

c

T
xy xykk y A y

X X x p v y p
−

= ∈ ∈
⎡ ⎤= = ⋅ + ⋅⎢ ⎥⎣ ⎦∑ ∑ ∑

Therefore, we have , or in matrix notation, , from which we can 

solve for v . Note that Example 6.9 is the same as this example with , . 

( ) f( ) ( )c xyy A
v x x v y p

∈
= + ⋅∑ = +v f Bv

f( ) 1x = cx A∀ ∈

 

Example 6.11 Suppose that 0  and consider the infinite-horizon discounted cost 

, defined for all . Show that . 

α< <

00
( ) E f( ) |k

kk
w x X X xα∞

=
⎡ ⎤= =⎢ ⎥⎣ ⎦∑ x ∈ S α= +w f Pw

Using the first-step analysis, we can write 

  

{ }
{ }

{ }

00

0 01 10 0

10 1

1
10 1

1 10

( ) E f( ) |

E f( ) | , Pr[ |

f( ) E f( ) |

f( ) E f( ) |

f( ) E f( ) |

k
kk

k
ky k

k
xy xyky k

k
xyky k

j
xjj

w x X X x

X X y X x X y X x

x p X X y p

x X X y p

x X X y p

α

α

α

α α

α α

∞

=

∞ ∞

= =

∞ ∞

= =

∞ ∞ −
= =

∞

+=

⎡ ⎤= =⎢ ⎥⎣ ⎦
⎡ ⎤= = = ⋅ = =⎢ ⎥⎣ ⎦

⎡ ⎤= ⋅ + = ⋅⎢ ⎥⎣ ⎦
⎡ ⎤= + = ⋅⎢ ⎥⎣ ⎦
⎡ ⎤= + ⋅ = ⋅⎢ ⎥⎣ ⎦

∑
∑ ∑
∑ ∑

∑ ∑
∑{ }

{ }
0

0
f( ) ( ) .

yy

xyy
x w y pα

∞

=

∞

=
= + ⋅ ⋅

∑
∑

In matrix notation, the relationship above can be written as . α= +w f Pw
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Example 6.12 Compute  when the transition matrix is lim n

n
P

→∞

 

1 2
3 3

1 1
2 2

1 3
4 4

3 1
4 4

0 0

0 0
.

0 0

0 0

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 

Clearly, there are two communicating classes in this Markov chain,  and . 

Moreover, states 1 and 2 are transient and states 3 and 4 are positive recurrent (it is impossible to have 

null recurrent states in finite states space). Therefore, in the first two columns of , we have all 

zeros. If we pay attention to the right lower  corner of the transition matrix, we find that it is a 

doubly stochastic matrix, so that the limiting probabilities across states 3 and 4 are both equal to 

1 {1,2}C = 2 {3, 4}C =

lim n

n
P

→∞

2 2×
1
2 . 

Therefore, the last two columns of  are full of lim n

n
P

→∞
1
2 ’s. 

 

Example 6.13 Given the following transition diagram with , find out . 0 1p< < lim n

n
P

→∞
p p  

3 0 1 

1-p 1-p 

2 1  
1 

 

 

Clearly, there are three communicating classes in this chain, . It is easy to 

determine that  and . Apparently states 1 and 2 are transient and states 0 

and 3 are positive recurrent (once again, it is impossible to get null recurrent states in a finite state 

space). Therefore, we have , , and 

. Note that the last limiting probabilities also imply that . Now we 

need determine , the limiting probabilities from one transient state 

to a positive recurrent state. 

1 2 3{0}, {1,2}, {3}C C C= = =

(0) (3) 1d d= = (1) (2) 2d d= =

( ) ( )
1 2lim lim 0, 0,1,2, 3n n

i in n
p p i

→∞ →∞
= = ∀ = ( ) ( )

03 30lim lim 0n n

n n
p p

→∞ →∞
= =

( ) ( )
00 33lim lim 1n n

n n
p p

→∞ →∞
= =

n

)1

00 33 1µ µ= =
( ) ( ) ( ) ( )
10 13 20 23lim , lim , lim ,  and limn n n

n n n n
p p p p

→∞ →∞ →∞ →∞

 

From Comment 6.4, it is easy to know that . Now we use the first-step 

analysis to get . We can write 

( )lim f , 1,2 and 0, 3n
ij ijn

p i j
→∞

= = =

f , 1,2 and 0, 3ij i j= =

 
( ) ( 010 10 10 1 11 1

1
10 20 12 202

f f E f | Pr |

1 f (1 ) f .

k k
yk k

k
k

X y X y X

p p p p

∞ ∞

= =
∞ −
=

⎡ ⎤= = = ⋅ = =⎢ ⎥⎣ ⎦
= ⋅ + ⋅ = − + ⋅

∑ ∑
∑

 

Similarly, we have  
  13 23 20 10 23 13f 0 (1 ) f , f f (1 ) 0 ,  and f f (1 ) 1 .p p p p p= ⋅ − + ⋅ = ⋅ − + ⋅ = ⋅ − + ⋅ p

1+ = 1

,

Taking advantage of the facts that f f  and , the equations above reduce to the 

following system: 
10 13 20 23f f+ =

  10 20 20 10f (1 ) f  and f (1 ) fp p p= − + ⋅ = − ⋅

which produces the result 

 2(1 )1
1 (1 ) 1 (1 )10 20f  and f pp

p p p p
−−

− − − −= = .  
Therefore, the limiting probabilities matrix is 
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2

2

(1 )1
1 (1 ) 1 (1 )

(1 ) 1
1 (1 ) 1 (1 )

1 0 0 0

0 0
.

0 0

0 0 0 1

pp
p p p pn

p p
p p p p

P
−−

− − − −

− −
− − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥→ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 

 

Example 6.14 Given the following transition diagram with , find out . 0 p< < 1

2

lim n

n
P

→∞

 1 

0 

1-p 1-p 

p 

2 

p 

1 

3 1 
 

 

 

There is only one communicating class containing all four states and . All 

four states are positive recurrent. One of the most distinguish feature of this Markov chain is that in odd 

number of steps, state 0 cannot communicate with states 0 and 2, state 2 cannot communicate with states 

2 and 0, state 1 cannot communicate with states 1 and 3, and state 3 cannot communicate with states 3 

and 1. In even number of steps, the feature is reversed. Therefore,  doesn’t exist but both  

and  exist.  

(0) (1) (2) (3)d d d d= = = =

lim n

n
P

→∞

2lim n

n
P

→∞
2 1lim n

n
P +

→∞

 

For sufficiently large n , let the odd-number of steps transition matrix be the following, 

 2 1

0 0 1

0 1 0
.

0 0 1

0 1 0

n

a a

b b
P

c c

d d

−

⎡ − ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥= ⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

 

From P , we can easily get the next even-number of steps transition matrix as, 2 1n−

)

p

p

 

2 2 1

(1 ) 0 (1 ) 00 0 1 0 1 0 0

0 1 0 1 0 0 0 (1 )(1 ) 0 (1 )
.

0 0 1 0 1 0 (1 ) 0 (1 ) 0

0 0 1 00 1 0 0 (1 )(1 ) 0 (1

n nP P P

a p ap aa a

b b p p b b p b

c c p p c p cp c

d d d d p d

−=

⎡ ⎤− + −⎡ − ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − + − − −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− + − − −⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 

 

Furthermore, we can do the same procedure one more time to get P . Finally by equating 

, which should be the case as n , we can solve for a b  and thus . 

2 1 2n nP P+ =
n c d 12 1 2 1nP P+ −= → ∞ , , , 2 2lim , limn n

n n
P P +

→∞ →∞

 

We get 1
1 (1 )

p
p pa c  and −

− −= =
2(1 )

1 (1 )
p

p pb d  and the  and 
n

 will be given accordingly. −
− −= = P +

→∞

2lim n

n
P

→∞

2 1lim n
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